
Constraint Programming Letters 1 (2007) 33–88 Submitted 1/2007; Published 11/2007

Data models as constraint systems: a key to the semantic web

Hassan Äıt-Kaci HAK@ILOG.COM

ILOG, Inc.
1195 West Fremont Avenue
Sunnyvale, CA 94087, USA

Editor: Lucas Bordeaux, Barry O’Sullivan, and Pascal Van Hentenryck

Abstract

This article illustrates how constraint logic programmingcan be used to express data models in rule-
based languages, including those based on graph pattern-matching or unification to drive rule appli-
cation. This is motivated by the interest in using constraint-based technology in conjunction with
rule-based technology to provide a formally correct and effective—indeed, efficient!—operational
base for the semantic web.

Keywords: semantic web, constraint programming, logic programming,unification, data models,
object models, description logic, feature logic, inheritance

1. Introduction

This article was written upon the invitation by CP 2006’s organizers to expandon the contents of my
communication as member of CP 2006’s panel on“The next 10 years of constraint programming”
(Aı̈t-Kaci, 2006). Its essential message is that thesemantic webis a particularly attractive area for
applications of constraint-based formalisms. This is true since the latter offera declarative paradigm
for expressing virtually anything that has a formal, especially logical, semantics, including efficient
operational semantics. Semantic-web researchers are currently in hot pursuit of a means to integrate
“static knowledge” bases (i.e., ontologies) with “dynamic knowledge” bases (i.e., rules). Thus, it
is herein argued that constraint logic programming (CLP) is quite suitable a candidate for such an
integration. The key is to use constraints to abstract data models upon which rule-based computation
may be carried out. Thus, the next 10 years may be the most fructifying yetfor constraint and WWW
technologies should both communities seize the opportunity to cross-breed asthe one offered by the
construction of the semantic web. To be sure, this author does not claim lonediscovery of this fact.
Indeed, several promising directions in this vein are being actively and creatively mined as we
speak—so to speak! This is true in particular for web-service discovery—see,e.g., (Benbernou and
Hacid, 2005; Preece et al., 2006).

1.1 Motivation

The author recently attended the 5th international semantic web conference(Cruz et al., 2006). It
was his“first” such conference, his interest having been spurred as a member of the World Wide
Web Consortium (W3C) Working Group (WG) on designing a Rule Interchange Format (RIF) as
ILOG, Inc.’s representative. In both venues, several proposalshave been put forth on the subject of
“integrating rules and ontologies.”The most prominent vein among these proposals centers on the

c©2007 Hassan Äıt-Kaci.



HASSAN A ÏT-KACI

integration of logic programming (LP) style of rules (e.g., Prolog), with the various declensions of
one or several of the“official” W3C ontology languages;e.g., OWL—Lite,DL, Full—or whatever
version of variousdescription logics(DLs) and their ancillary XML-based technologies (Motik
et al., 2006; Grosof et al., 2003; Krötzsch et al., 2006).

However, it appears that only very few have yet exploited the powerful and flexible computa-
tional paradigm known asconstraint logic programming(CLP), which naturally—and formally!—
enables such integrations, both semanticallyand operationally.1 This is odd since one of the best
formulations of this formalism, presented by Höhfeld and Smolka (1988), was originally proposed
for the very purpose of integratingLP with DLs! That theCLP scheme has not been thus far used
asthe key for achieving this integration is all the more surprising taking into accountthat the main-
stream of work on formal ontologies for the semantic web trace back their origin to the formulation
introduced by Schmidt-Schauß and Smolka (1991).

Hence what motivates this author is to explain preciselywhy and how the CLP scheme is
adequate for the marriage of rules and ontologies. Concommitantly, the RIF WGrequested a similar
kind of explication for how constraints may be an appropriate formalism for capturing“real life”
data models such as those ofJava, C#, or evenC++. The issues we address in this paper are thus
all the more timely for this reason as well.

1.2 Relation to other work

How, then, does our proposal relate to other work? And hasn’t constraint technology already been
used for the semantic web? We presently review what we know of other efforts to mix rules and
ontologies for the semantic web, and how constraint technology has been used.

A means to use description logic as a constraint language in a Horn rule language was in fact
worked out before by Bucheit et al. (1993). That work is in fact the theoretical foundation ofAL-log
(Donini et al., 1998) and CARIN (Levy and Rousset, 1998), and is itselfa direct adaptation of the
constraint system originally proposed by Schmidt-Schauß and Smolka (1991) to reason about typed
attributive concepts. Indeed, it falls within (or very close to) the approach we present here. It is
based on seeingDL statement constraints in the exact same sense as we say. But, although they use
a solving process based on formula transformation, it differs from how order-sorted feature (OSF)
constraints are solved—see Section 3.1. The latter is based on congruence closure of feature paths
(generalizing Herbrand unification) andreducesa constraint to solved form or⊥. The former is
based on a Deductive Tableau method andcompletesa constraint by adding more constraints until
it reaches a saturation state, which may then be decided consistent or not. This leads to problematic
performance problems, especially for scalability when used on very largeontologies. Furthermore,
using such eagerly saturative methods makes it clearly impossible to deal with semi-decidable con-
straint systems. On the other hand, lazily reductive methods likeOSFconstraint solving can, by
delaying potentially undecidable constraints until further information ensues. These points are fur-
ther elaborated in Section 4.2. Finally, no formal connection with theCLP semantic scheme is
made by Bucheit et al. (1993). Nevertheless, what they propose is abona fideexemplar of seeing
data description as constraints. We will discuss further this approach in Section 3.3.3, in relation
with the material on theOSF andDL formalisms presented in Sections 3.1 and 3.2.

F-Logic (Kifer et al., 1995) is one popular formalism claimed to be adequate for the reasoning
power needed for semantic-web applications (Kifer et al., 2005). It is a formal logic-programming

1. The reader is referred to (Jaffar and Maher, 1994) for an excellent survey ofCLP ’s power and potential.

34



DATA MODELS AS CONSTRAINT SYSTEMS

paradigm designed to accommodate a “frame” notation extending that of Herbrand terms—so-called
slotted terms—allowing specifying subterms by keywords rather than position. This notation, used
in lieu of arguments of predicates appearing in Horn rules, allows writing rules over attributed ob-
jects. There are runningLP systems based on F-Logic: for example, FLORID (Frohn et al., 1997)
and Flora-2 (Kifer, September 9, 2007). Although the syntax of F-Logicterms is close to that of
OSF terms, which we present here, they do not have the same semantics at all. For one, F-Logic
terms denote fully defined individuals whileOSF terms (likeDL concept expressions), denote
sets as well as individuals (singleton sets). This is the difference betweena partial description and
a complete one: with the former a term is an approximation of individuals (includingcompletes
ones), and with the latter terms may only denote complete individuals. Another major difference is
that, although F-Logic offers notation for slotted objects, classes, and inheritance, its semantics is
not based onCLP, and objects, classes, and inheritance are not processed as constraints. Rather,
F-Logic merely offers syntactic sugar that is transformed into a semantically equivalenttabulated-
logic programming form. The resulting program, when executed, realizes F-Logic’s semantics op-
erationally.

Although this approach is a perfectly admissible manner to proceed, it misses thepoint we
advocate here. For one, by relying on the underlying all-purposeLP reasoning engine misses
performance gains made possible by special-purpose solving methods. F-Logic needs to use a
tabulated logic programming language such as XSB Prolog (Sagonas et al., 1993) rather than stan-
dard Prolog to avoid some termination pitfalls. Indeed, in order to handle recursive class defi-
nitions, one needs proof“memoizing” such as supported by tabulated-logic programming (Shen
et al., 2001). Tabulated-logic programming is a family of Horn-clause resolution-based logic-
programming languages—i.e., Prolog—with a modified control strategy that uses proof-memoizing
techniques inspired from Dynamic Programming. Control records the most general proofs it has so
far undertaken or achieved for any predicate usingtables(i.e., relationalcaches).2 Hence, this can
avoid falling into fruitless infinite derivations when a proof is found to be a subproof of itself—e.g.,
such as may be generated by a left-recursive rule. Thus, our essential concern is that F-Logic does
not abide by the “data as constraint” slogan we are advocating here.

1.3 Organisation of contents

The remainder of our presentation is organized as follows. The style is a semi-formal tutorial. Its
real aim is to stress subtle paradigm shifts that are of primordial importance inappreciating the
potential ofCLP as opposed to plainLP or CP. Thus, Section 2 synopsizes the essence ofCLP.
We present the basic scheme introduced by Jaffar and Lassez (1987)as reformulated by Ḧohfeld
and Smolka (1988). Section 2.2 deals with howconstraint solving(as opposed togeneral-purpose
logical reasoning) is then put to practical use for meshing various data models in harmony with
the logical rule semantics manipulating them. In Section 2.3, we show how the data models of
Datalog and Prolog are expressed as constraints fitting theCLP scheme. In Section 3, we turn
to typed attributed structures and express those as constraints. Section 3.1gives a summary of
theOSF formalism for describing data that takes the form of rooted labelled graphs. Section 3.2
gives a summary of basic Description Logic. Both formalisms are meant to be formal languages

2. One must not confusetabulatedLP (Shen et al., 2001) withdeductive tableauLP (Manna and Waldinger, 1991).
A deductive tableau is also a table, but of a different kind whose rows represent assertions and goals, and may be
transformed by appropriate deduction rules—non-clausal resolution and induction, essentially.

35



HASSAN A ÏT-KACI

for describing typed attributed data structures denoting sets. Section 4 compares the expressivity
of both and how they are related. In Section 3.3, specific examples of data models are specified as
constraints—includingJava-style classes and objects, but also OWL-type ontologies. Section 4
analyzes the relative expressive and computational powers of theOSF andDL formalisms. Last,
we conclude in Section 5 with some perspective opened by our proposal for the semantic web to
view ontologies as constraints. We also adjoin a small appendix to recall basicterminology on
Herbrand terms and substitutions in Section A, on monoidal algebra in Section B, and a technical
note on strong extensionality in Section C.

2. Constraint logic programming

In 1987, at the height of research interest in logic programming, Jaffarand Lassez proposed a novel
logic-programmingschemethey calledconstraint logic programming(Jaffar and Lassez, 1987).
The idea was to generalize the operational and denotational semantics ofLP by dissociating the
relational level—pertaining to resolving definite clauses made up of relationalatoms—and the data
level pertaining to the nature of the arguments of these relational atoms (e.g., for Prolog, first-order
Herbrand terms). Thus, for example, in Prolog seen as aCLP language, clauses such as:

append([],L,L).
append([H|T],L,[H|R]) :- append(T,L,R).

are construed as:

append(X1,X2,X3) :- true
| X1 = [], X2 = L, X3 = L.

append(X1,X2,X3) :- append(X4,X5,X6)
| X1 = [H|T], X2 = L, X3 = [H|R],
X4 = T, X5 = L, X6 = R.

The ‘|’ may be read as“such that” or as “subject to.” It is in fact the logical connective
“and”—i.e., as the one denoted by acomma(‘,’). The part of the rule’s RHS on the right of the ‘|’
is called itsconstraintpart. It keeps together specific parts of the goal formula making the body of
the rule—in this case, equations among (first-order) Herbrand terms. Therest of the rule besides
the constraint is made up of relational atoms where all variables are distinct. Variables are shared
between the relational rule part and the rule constraint.

At first sight, the above reformulation of theappend predicate may look like a silly and more
verbose rewriting of the same thing. And why the ‘|’ rather than the ‘,’ if they mean the same
thing?

It is, indeed, a harmless rewriting of the same thing. But it is not so useless as I shall presently
contend. Importantly, it isolates a subset of the factors of the logicalconjunctionthat:

1. commuteswith the other factors in the conjunction; and,

2. may besolved using a special-purpose constraint solver, presumably more efficiently than
any general-purpose logic rule inference engine.

36



DATA MODELS AS CONSTRAINT SYSTEMS

In addition, as we next explicate, it enables expressing a clean abstractmodel-theoretic as well
as moreoperationalproof-theoretic semantics for a large class of rule-based languages over dis-
parate data models—not just Herbrand terms. In particular, it is a natural and effective means for
integrating rule-based programming with data-description logics—currently aHoly Grail being ac-
tively sought to enable thesemantic web. At least this is the impression one gets from such recent
semantic-web conference papers such as,e.g., (Motik et al., 2006).

2.1 TheCLP scheme

In (Höhfeld and Smolka, 1988), a refinement of the scheme of (Jaffar and Lassez, 1987) is presented
that is both more general and simpler in that it abstracts away the syntax of constraint formulae and
relaxes some technical demands on the constraint language—in particular,the somewhat baffling
“solution-compactness”condition required in (Jaffar and Lassez, 1987).3

The Höhfeld-SmolkaCLP scheme requires a setR of relational symbols(or, predicate sym-
bols) and aconstraint languageL. It needs very few assumptions about the languageL, which must
only be characterized by:

• V, a countably infinite set ofvariables(denoted as capitalizedX,Y, . . .);

• Φ, a set offormulae(denotedφ, φ′, . . .) calledconstraints;

• a functionVAR : Φ 7→ V, which assigns to every constraintφ the setVAR (φ) of variables
constrained byφ;

• a family of admissibleinterpretationsA over some domainDA;

• the setVAL (A) of (A-)valuations, i.e., total functions,α : V 7→ DA.

By “admissible” interpretation, we mean an algebraic structure and semantic homomorphisms
that are appropriate for interpreting the objects in the constraint domains. For example, if the con-
straint domain is the set of first-order (Herbrand) terms on a ranked signature of uninterpreted func-
tion symbols, and the constraints are equations among these—i.e., Prolog—then, any Herbrand
interpretation would be an admissible interpretation for this specific constraintlanguage.

Thus,L is not restricted to any specific syntax,a priori. Furthermore, nothing is presumed about
any specific method for proving whether a constraint holds in a given interpretationA under a given
valuationα. Instead, we simply assume given, for each admissible interpretationA, a function
[[ ]]A : Φ 7→ 2

VAL (A) that assigns to a constraintφ ∈ Φ the set[[φ]]A of valuations, which we call
thesolutionsof φ underA.

Generally, and in our specific case, the constrained variables of a constraint φ will correspond
to its free variables, andα is a solution ofφ under the interpretationA if and only if φ holds true in
A once its free variables are given valuesα. As usual, we shall denote this as “A, α |= φ.”

Then, givenR, the set of relational symbols (denotedr, r1, . . .), andL as above, the language
R(L) of relational clausesextends the constraint languageL as follows. The syntax ofR(L) is
defined by:

• the same countably infinite setV of variables;

• the setR(Φ) of formulae̺ fromR(L), which includes:

3. “Compactness”in logic is the property stating that if a formula is provable, then it is provable infinitely many steps.

37



HASSAN A ÏT-KACI

– all L-constraints,i.e., all formulaeφ in Φ;

– all relational atomsr(X1, . . . , Xn), whereX1, . . . , Xn ∈ V, mutually distinct;

and is closed under the logical connectives& (conjunction) and→ (implication); i.e.,

– ̺1 & ̺2 ∈ R(Φ) if ̺1, ̺2 ∈ R(Φ);

– ̺1 → ̺2 ∈ R(Φ) if ̺1, ̺2 ∈ R(Φ);

• the functionVAR : R(Φ) 7→ V extending the one onΦ in order to assign to every formula̺
the setVAR (̺) of thevariables constrained by̺:

– VAR(r(X1, . . . , Xn))
DEF
== {X1, . . . , Xn};

– VAR(̺1 & ̺2)
DEF
== VAR(̺1) ∪ VAR(̺2);

– VAR(̺1 → ̺2)
DEF
== VAR(̺1) ∪ VAR(̺2);

• the family of admissibleinterpretationsA over some domainDA such thatA extends an
admissible interpretationA0 of L, over the domainDA = DA0 by adding relationsrA ⊆
DA× . . .×DA for eachr ∈ R;

• the same setVAL (A) of valuationsα : V 7→ DA.

It is important to note that each variable occurs only once in each atom, and inno other relational
atom in a given clause. One may think of this as each relational atom having a unique variable name
for each of its arguments. Of course, these variables may (and usually do!) occur in the constraint
part; e.g., in the form of argument bindingsX = e. This requirement of “distinctness” for the
variables appearing in relational atoms is simply for each variable to identify uniquely the argument
of the atom it stands for, while ensuring that no inconsistency may ever arise with a constraint store.
Only the constraint side of a clause may thus be inconsistent, as will be soon explained.

Again, for each interpretationA admissible forR(L), the function[[ ]]A : R(Φ) 7→ 2
VAL (A)

assigns to a formula̺∈ R(Φ) the set[[φ]]A of valuations, which we call thesolutionsof ̺ underA.
It is defined to extend the interpretation of constraint formulae inΦ ⊆ R(Φ) inductively as follows:

• [[r(X1, . . . , Xn)]]A
DEF
== {α | 〈α(X1), . . . , α(Xn)〉 ∈ rA};

• [[φ1 & φ2]]
A DEF

== [[φ1]]
A ∩ [[φ2]]

A;

• [[φ1 → φ2]]
A DEF

== (VAL (A)− [[φ1]]
A) ∪ [[φ2]]

A.

Note that anL-interpretationA0 corresponds to anR(L)-interpretationA, namely whererA0 = ∅
for everyr ∈ R.

As in Prolog, we shall limit ourselves todefinite relational clausesin R(L) that we shall write
in the form:

r( ~X) ← r1( ~X1) & . . . & rm( ~Xm) [] φ, (1)

where(0 ≤ m) and:

• r( ~X), r1( ~X1), . . . , rm( ~Xm) are relational atoms inR(L); and,

• φ is a constraint formula inL.

38



DATA MODELS AS CONSTRAINT SYSTEMS

Again, the symbol[] is just & in disguise. It is only used to make the various constituents more
conspicuous, separating relational resolvent from the constraint formulaφ.

Given a setC of definiteR(L)-clauses, amodel M of C is anR(L)-interpretation such that
every valuationα : V 7→ DM is a solution of every formula̺ in C, i.e., [[̺]]M = VAL (M). In fact,
anyL-interpretationA can be extended to aminimal modelM of C. Here, minimality means that
the added relational structure extendingA is minimal in the sense that ifM′ is another model ofC,
thenrM ⊆ rM′

(⊆ DA× . . . ×DA) for all r ∈ R. For further details, see (Ḧohfeld and Smolka,
1988).

Also, a least fix-point semantics construction of minimal models ofCLP programs is given in
(Höhfeld and Smolka, 1988). The minimal modelM of C extending theL-interpretationA can be
generated as the limitM =

⋃

i≥0 Ai of a sequence ofR(L)-interpretationsAi as follows. For all
r ∈ R we define:

rA0
DEF
== ∅;

rAi+1
DEF
== {〈α(x1), . . . , α(xn)〉 | α ∈ [[̺]]Ai ; r(x1, . . . , xn)← ̺ ∈ C};

rM DEF
==

⋃

i≥0 r
A
i .



















(2)

A resolvent is a formula of the form̺ [] φ, where̺ is a possibly empty conjunction of
relational atomsr(X1, . . . , Xn)—its relational part—andφ is a possibly empty conjunction ofL-
constraints—itsconstraint part. Again, [] is just & in disguise and is used only to emphasize
which part is which. (As usual, an empty conjunction is assimilated totrue, the formula that takes
all arbitrary valuations as solution.)

Finally, the Ḧohfeld-Smolka scheme defines constrainedresolutionas a reduction rule on re-
solvents that gives a sound and complete interpreter forprogramsconsisting of a setC of definite
R(L)-clauses. The reduction of aresolventR of the form:

B1 & . . . & r(X1, . . . , Xn) & . . . Bk [] φ (3)

by the (renamed) program clause:

r(X1, . . . , Xn)← A1 & . . . & Am [] φ′ (4)

is the new resolventR′ of the form:

B1 & . . . & A1 & . . . & Am & . . . Bk [] φ & φ′. (5)

The soundness of this rule is clear: under every interpretationA and every valuation such that
R holds, then so doesR′, i.e., [[R′]]A ⊆ [[R]]A. It is also not difficult to prove its completeness: if
M is a minimal model ofC, andα ∈ [[R]]M is a solution of the formulaR in M, then there exists a
sequence of reductions of (theR(L)-formula)R to anL-constraintφ such thatα ∈ [[φ]]M.

Before we give our formal view of constraint solving as a proof system,let us recapitulate a few
important points:

• Although semantically discriminating some specific formulae as constraints, theCLP view
agrees, and indeed uses, the interpretation of constraints as formulae, thus inheriting “for
free” a crisp model-theory as shown above.

39



HASSAN A ÏT-KACI

• Better yet, the most substantial benefit is obtained operationally. Indeed, this is so because
we can identify among all formulae to be proven some specific formulae to be processed
as constraints, for which presumably a specific-solving algorithm may be used rather than a
general-purpose logic-programming machinery.

The above remarks are perhaps the most important idea regarding theCLP approach. Indeed,
many miss this point:“Constraints are logical formulae—so why not use only logic?”Sure, con-
straints are logical formulae—and that isgood! But the fact that such formulae, appearing as factors
in a conjunction,commutewith the other non-constraint factors enables freedom for the operational
scheduling of resolvents to be reduced. This is the key situation being exploited in our approach.
Yet another serendipitous benefit of this state of affairs is that it enablesmore declarative operational
semantics than otherwise possible thanks to the technique of goalresiduation(Aı̈t-Kaci et al., 1987;
Aı̈t-Kaci and Nasr, 1989; Smolka, 1993; Aı̈t-Kaci et al., 1994b). As well, as explained in (Aı̈t-Kaci
et al., 1997), an important effect of constraint solving is that it enables asimple means toremember
proven fact(i.e., proof memoizing)—something that model-theory is patently not concerned with.
(See also Sections 1.2 and 3.3.4.)

Thanks to the separation of concerns explicated above between rules and constraints, we may
use constraint solving operationally asrealizing the logical semantics ofconstraints as logical for-
mulaeusing special-purpose algorithms using a proof-theoretic notion of constraint normalization.
We explain this next.

2.2 Constraint solving

In the Höhfeld-SmolkaCLP scheme, the language of constraintΦ is not syntactically specified in
any way, except that it makes use of the same set of variables as the relational rule part. Special val-
uationsα : V 7→ DA of variables taking values in an appropiate semantic domain of interpretation
are deemedsolutionsin the sense that theysatisfyall constraints as mandated by theCLP scheme.
How to find these solutions operationally is orthogonal to theCLP model-theoretic semantics. A
specific operational process computing constraint solutions is calledconstraint solving. It may be
specified in any operational way as long as it may be formally proven to be correct with respect to
the logical semantics of the constraints.
§Decision problems –There are two decision problems of interest regarding constraints in a con-
straint languageΦ: (1) consistencyand (2)entailment.

The constraint⊥, called theinconsistent constraint, is such thatA, α 6|= ⊥ for every inter-
pretationA and A-valuationα. Two syntactic expressionse and e′ are said to besyntactically
congruent—notede ≃ e′—if and only if they denote the same semantic object;viz., [[e]] = [[e′]].

Definition 1 (Constraint consistency) A constraintφ is said to beconsistentif and only ifφ 6≃ ⊥.

Thus, when data structurest andt′ are viewed as constraints, we say that they areunifiable if
and only if the constraintt = t′ is consistent. Whent andt′ are unifiable,unification of t andt′

is the operation that computes a valuationα such thatα(t) andα(t′) are identical data structure.
Clearly then, unifiability is a symmetric relation and unification is a commutative operation.

Definition 2 (Constraint entailment) Given two constraintsφ andφ′, φ is said toentailφ′ if and
only if A, α 6|= φ or A, α |= φ′ for every interpretationA andA-valuationα.

40



DATA MODELS AS CONSTRAINT SYSTEMS

Given two data structurest andt′, we say thatt subsumes(or is more general than) t′ if and only
if t′ entailst when viewed as constraints. Whent subsumest′, pattern-matchingis the operation
computing a valuationα such thatα(t) andt′ are identical data structure. We then say thattmatches
t′. Clearly then, entailment is an asymmetric relation and pattern-matching is a non-commutative
operation.

Typically, unification is used in rule-based computational systems such asLP and equational
theorem-proving, while pattern-matching is used in rule-based systems usingrewrite rules or pro-
duction rules. The former allows refining input data to accommodate success, while the latter forbids
modifying input data. Finally, note that pattern-matching can itself be reducedto a unification prob-
lem by treating all the variables of the entailing data structure as constants. This is akin to stating
that constraintφ entails constraintφ′ if and only if φ & φ′ ≃ φ.

Therefore, when data structures are viewed as constraints describingdata, the only decision
procedure that is needed for constraint solving is consistency checking.
§Constraint normalization – Because constraints are logical formulae, constraint solving may be
done by syntax-transformation rules in the manner advocated by Plotkin (1981). Such a syntax-
transformation process is calledconstraint normalization. It is convenient to specify it as a set of
semantics-preserving syntax-driven conditional rewrite rules calledconstraint normalization rules.
We shall write such rules in “fraction” form such as:

(An) RULE NAME :h
Condition

i Prior Form

Posterior Form

whereAn is a label identifying the rule:A is the rule’s constraint system’s name, andn is a number,
or a symbol, uniquely identifiying the rule within its system. Such a rule specifies how the prior for-
mula may be transformed into the posterior formula, modulo syntactic congruences.Condition
is an optional side metacondition on the formulae involved in the rules. When a side condition is
specified, the rule is applied only if this condition holds. A missing condition is implicitlytrue. A
normalization a rule is said to becorrectif and only if the denotation of the prior is the same as that
of the posterior whenever the side condition holds.
§Normal form – A constraint formula that cannot be further transformed by any normalization
rule is said to be innormal form. Thus, given a syntax of constraint formulae, and a set of cor-
rect constraint-normalization rules, constraint normalization operates by successively applying any
applicable rule to a constraint formula, only by syntax transformation.
§Solved form –Solved forms are particular normal forms that can be immediately seen to be consis-
tent or not. Indeed, normal forms constitute a canonical representation for constraints. Of course, for
constraint normalization to be effective for the purpose of constraint solving, a rule must somehow
produce a posterior form whose satisfiability is simpler to decide than that of itsprior form. Indeed,
the point is to converge eventually to a constraint form that can be trivially decided consistent, or
not, based on specific syntactic criteria.
§Residuated form –Constraints that are in normal form but not in solved form are calledresidu-
atedconstraints. Such a constraint is one that cannot be normalized any further, but that may not
be decided either consistent or inconsistent in its current form. Thanks tothe commutativity of
conjunction, residuated forms may be construed assuspendedcomputation. Indeed, because con-
straint normalization preserves the logical semantics of constraints, the processcommuteswith the

41



HASSAN A ÏT-KACI

relational resolution as expressed by theCLP resolution operation that yields a new constrained
resolvent (5) from an old constrained resolvent (3) and a constrained clause (4). This interplay es-
tablishes “for free” an implicitcoroutiningbetween the resolution and constraint-solving processes
as these processes communicate through their shared logical variables.

We next specify some common logic-programming rule dialect classes using theCLP scheme
by explicating the kind of constraint formulae they are manipulating, with what normalization rules,
and towards what solved forms.

2.3 Examples

To illustrate the foregoing scheme, we now recast the two well-known logic programming languages
Datalog and Pure Prolog in terms ofCLP by explicating their constraint systems.

2.3.1 DATALOG

Datalog is a simplified logic-programming dialect sufficient for expressing relational data, views,
and queries, as well as recursion. It is a formal tool used by academicsfor expressing computation
in Deductive Databases (Ullman, 2003).

A Datalog program consists of two parts: anintensionaldatabase (IDB) and anextensional
database (EDB). The IDB is an unordered collection rules of the form:

r0(d
0
1, . . . , d

0
n0

) ←
∧

i≥1

ai(d
i
1, . . . , d

i
ni

).

where theri’s are relational symbols, theai’s are possibly negated relational symbols (i.e., eitherr
or ¬r), and thedi

ni
’s are either logical variables or constants. The EDB is an unordered collection

of relational tuples of the form:
r(c1, . . . , cn).

wherer is a relational symbol that does not appear as the head of an IDB rule, and theci’s are
constants. When no negation is allowed in the rules, the dialect is calledPositive Datalog. When
negation is restricted so that no rule head’sr(. . .) may lead to an atom¬r(. . .) through any recursive
dependency, the dialect is calledStratified Datalog.

It is not difficult to show that the least fix-point model of Positive Datalog concides with that
defined by Equations (2), whereD is the constraint system that solves equations between variables
and values appearing as arguments of tuples in the EDB. This constraint language consists of con-
junctions of equations of the forms

.
= t wheres andt are either variables or constants.

The solved forms are conjunctions of equations either of the formX
.
= a, whereX is a variable

anda a constant, orX
.
= Y whereY appears nowhere else. Constraint normalization rules are

very simple: given a conjunctionφ of such equations, we apply non-deterministically any of the
rules of Figure 1 until none is applicable. The expressionφ[X/Y ] denotes the constraintφ where
all occurrences ofY are replaced byX. These rules areconfluent modulo variable renaming.
Confluent rules are such that order of application does not matter—the rules have the “Church-
Rosser” property. Recall that constraint normalization rules are always implicitly applied modulo
syntactic congruence—viz., here: associativity and commutativity of the& operator. Clearly, they
also always terminate, ending up either in⊥, the inconsistent constraint, or in a conjunction of
equations in solved form.

42



DATA MODELS AS CONSTRAINT SYSTEMS

(D1) ERASE:�
if t is a constant or a variable

� φ & t
.
= t

φ

(D2) FLIP :�
if a is a constantand X is a variable

� φ & a
.
= X

φ & X
.
= a

(D3) SUBSTITUTE :�
if X andY are variablesand Y occurs inφ

� φ & X
.
= Y

φ[X/Y ] & X
.
= Y

(D4) FAIL :�
if a andb are constantsand a 6= b

� φ & a
.
= b

⊥

Figure 1:The constraint systemD

This constraint-normalization process merely amounts to verifying constant arguments and
binding variable arguments. Hence, a solved form is nothing other than abinding environment
corresponding to a tuple belonging to the model of the computed relation—i.e., what we called a
variable valuation (α) in Equations (2). With this setup, Datalog∈ CLP(D), whereD is the con-
straint system of Figure 1. We informally use the notationCLP(A) to characterize aCLP language
over a constraint systemA.

2.3.2 PURE PROLOG

In this section, we describe a non-deterministic unification algorithm presented as a set of constraint-
normalization rules. Each normalization rule iscorrect; i.e., it is a syntactic transformation of a set
of equations that preserves all and only solutions of the original constraint. (See Appendix Sec-
tion A for basic notions for first-order Herbrand terms and substitutions.) This is in contrast with
Robinson’s unification algorithm, which is (still!) often presented as an atomic operation on terms
(Robinson, 1965). These normalization rules were first formulated by Jacques Herbrand in 1930
in his PhD thesis—reprinted in (Herbrand, 1971), Page 148—that is, 35 years before Robinson’s
algorithm was published! This was already explicitly pointed out in 1976 by Gérard Huet in his
Frenchthèse d’́etat (Huet, 1976). These rules were later rediscovered by Martelli and Montanari
(1982) —20 years after Robinson’s paper! They were seeking to simplify [!] Robinsons’s algo-
rithm, apparently unaware of Huet’s remark. As we shall see later in this document—see Sections
3.1.4 and 3.3.1—this algorithm is a special case of a more general one basedonOSF constraint-
solving by normalization. For related readings giving a a generalized abstract view of unification
and constraint-solving in a category-theoretic setting, see also (Schmidt-Schauß and Siekmann,
1988) and (Goguen, 1989).

43



HASSAN A ÏT-KACI

§Herbrand term unification – An equationis a pair of terms, writtens
.
= t. A substitutionσ is a

solution(or aunifier) of a set of equations{si
.
= ti}

n
i=1 iff siσ = tiσ for all i = 1, . . . , n. Two sets

of equations areequivalentiff they both admitall andonly the same solutions. Following (Martelli
and Montanari, 1982), we define two transformations on sets of equations—term decomposition
andvariable elimination. They both preserve solutions of sets of equations.

TERM DECOMPOSITION : If a setE of equations contains an equationf(s1, . . . , sn)
.
=

f(t1, . . . , tn), wheref ∈ Σn, (n ≥ 0), then the setE′ = E−{f(s1, . . . , sn)
.
= f(t1, . . . , tn)}

∪ {si
.
= ti}

n
i=1 is equivalent toE. If n = 0, the equation is simply deleted.

VARIABLE ELIMINATION : If a setE of equations contains an equationX
.
= twheret 6= X,

then the setE′ = (E − {X
.
= t})σ ∪ {X

.
= t} whereσ = {t/X}, is equivalent toE.

A set of equationsE is partitioned into two subsets: itssolvedpart and itsunsolvedpart. The
solved part is its maximal subset of equations of the formX

.
= t such thatX occurs nowhere in

the full set of equations except as the left-hand side of this equation alone. The unsolved part is the
complement of the solved part. A set of equations is said to befully solved iff its unsolved part is
empty.

In Figure 2 is a unification algorithm. It is a non-deterministic normalization procedure for a
constraintφ = ε1 & . . . & εn corresponding to a setE = {ε1, . . . , εn} of equations. The“Cycle”
rule performs the so-called“occurs-check”test. Omitting this rule altogether yields rational term
unification;i.e., cyclic equations may be obtained as solved forms. Most implemented systems omit
occurs-check either for reason of efficiency (e.g., most Prolog compilers) or simply because their
data model’s semantics hasbona fideinterpretations for cyclic terms—e.g., (Colmerauer, 1990; Äıt-
Kaci and Podelski, 1993). For a thorough understanding of the logic offinite and infinite rational
tree constraints, one must read Maher (1988a,b). For linguistics applications based on a formalism
mixing categorial grammars and feature terms, see Damas et al. (1994).

If this non-deterministic equation-normalization process terminates with success, the set of
equations that emerges as the outcome is fully solved. Its solved part defines a substitution called
the most general unifier(MGU) of all the terms participating as sides of equations inE. If it
terminates with failure, the set of equationsE is unsatisfiable and no unifier for it exists. Thus,
Prolog∈ CLP(H), whereH is the constraint system of Figure 2.

Of course, the benefit of usingCLP to reformulate Prolog and Datalog is only an academic
exercise confirming that it is at least capable of that much expressive power. Going beyond con-
ventional logic-programming languages’ expressivity, the exact same manner of proceeding can be
(and has been) used for logic-programming reasoning over more interesting data models. Examples
areHλ integrating Herbrand terms with interpreted functions—i.e., theλ-Calculus—as done by
Aı̈t-Kaci and Nasr (1989), or using guarded rules as done by Smolka (1993), or using rewrite rules
over typed objects as done by Aı̈t-Kaci and Podelski (1994).

As mentioned before, we will reformulate Herbrand unification in the more general frame-
work of OSF constraints, asOSF constraint normalization. TheOSF approach is more gen-
eral than Jacques Herbrand’s algorithm in the sense that it works not only for Herbrand terms,
but also for order-sorted labelled graph structures using anOSF constraint syntax that amounts
to conjunctions of finer-grained atomic constraints. Operationally, this allowsmore commutation
with inference operations such as,e.g., logical resolution, and therefore the more declarative non-
deterministic concurrent entertwining of both processes. Indeed, whena constraint system is only

44



DATA MODELS AS CONSTRAINT SYSTEMS

(H1) ERASE:�
if t ∈ Σ0 ∪ V

� φ & t
.
= t

φ

(H2) FLIP :�
if t is not a variable

and X is a variable

� φ & t
.
= X

φ & X
.
= t

(H3) SUBSTITUTE :�
if X occurs inφ

� φ & X
.
= t

φ[X/t] & X
.
= t

(H4) DECOMPOSE:�
if f ∈ Σn, (n ≥ 0)

� φ & f(s1, . . . , sn)
.
= f(t1, . . . , tn)

φ & s1
.
= t1 & . . . & sn

.
= tn

(H5) FAIL :24 if f ∈ Σm, (m ≥ 0)
and g ∈ Σn, (n ≥ 0)
and m 6= n

35 φ & f(s1, . . . , sm)
.
= g(t1, . . . , tn)

⊥

(H6) CYCLE :24 if X is a variable
and t is not a variable
and X occurs int

35 φ & X
.
= t

⊥

Figure 2:The constraint systemH

45



HASSAN A ÏT-KACI

semi-decidable—e.g., higher-order unification (Huet, 1972)—complete rule resolution over such
constraints is possible by dove-tailing resolution steps and constraint-solving steps—e.g., λProlog
(Nadathur and Miller, 1998).

In the next section, we develop a finer grain notion of term—whether tree, DAG, or graph, node-
and/or edge-labelled, with or without arity or schema constraints—to formalizemore adequately
modern data models such as,e.g., objects and their class types, inheritance,etc., . . . Such terms are
defined as specific“crystallized” syntaxes that“dissolve” into a semantically equivalent conjunc-
tion of elementary constraints. The chemical metaphor of a molecular structuredissolving into a free
solution of ions is quite appropriate here. The term syntax structure is the“molecule,” and the“ions”
are the elementary constraints floating freely in the“aqueous solution”—i.e., the conjunction. Thus,
the“ions” —i.e., the elementary constraints— are allowed to“react”—i.e., be normalized—as they
“move about”thanks to& being associative and commutative. The “empty”“aqueous solution”is
the constrainttrue. The constraint-solving process thus starts with a constraint-dissolvingprocess.
This chemical metaphor is not new and was originally proposed in (Banâtre and Le Ḿetayer, 1986),
and later used to define theChemical Abstract Machine, the calculus of concurrency of (Berry and
Boudol, 1990). Although, the chemical metaphor is not made explicit in concurrency models based
on constraints—e.g., (Saraswat, 1989)—it works for constraint-based models of concurrency as
well as forhigher-orderconcurrency models. Concurrent languages such as Gamma (Le Métayer,
1994) and Oz (Smolka, 1994) are based on this elegant metaphor.

3. Typed attributed stuctures as constraints

Many modern computation systems are based on a notion of object and class.An object is a record
structure—i.e., a composite structure consisting of a conjunction offields holdingvalues. A class
is a type of objects—i.e., a composite structure consisting of a conjunction of fields holdingtypes.
A class describes a template for all objects of its type. Object to class adequacy is ensured by type
verification. Such type verification may be done partly statically, or dynamically. It may consist
of type checking—i.e., confirming that all object fields carry only values as prescribed by the type
of this field in the object’s class—ortype inference—i.e., deducing appropriate most general types
wherever type information is missing or incomplete—or both. Static type checkingmay be seen
asabstract interpretation—i.e., a decidable approximation of the dynamic model of computation.
Typically, appropriately calleddependent types—i.e., any type depending on dynamic values—
are checked dynamically—e.g., array bounds inJava. When types are viewed as constraints,
dynamic type checking based on constraint-solving in a logical rule language may also be used as
a performance booster as it focuses the inference process only on relevant values. In addition, type
constraints are incrementally memoized as they are verified, therefore actingasproof caches. As a
result, nothing about a type should ever be proved twice.

This relation of object/class type adequacy can be captured precisely andformally as a constraint
system when the classes and objectsthemselvesare seen no longer aslabelled graph structures
but aslogical constraints. This is the purpose of the order-sorted feature constraint system we
summarize next, after we review some basic vocabulary.
§Attributive conceptual taxonomies –In the literature, the following words are often used inter-
changeably for the same category of symbols:attribute, projection, role, field, slot, property, feature.
For us as well: any such symbol will denote a function—evenrole, which denotes a binary relation
(i.e., a set-valued function). So, without loss of generality, we shall call such symbolsfeatures.

46



DATA MODELS AS CONSTRAINT SYSTEMS

The following words are also often used interchangeably to mean roughly the same thing:type,
class, sort, kind, domain, extension. However, such is not the case in this presentation! Although
they all denote sets of values, there are important distinctions;viz., we use:

• “type” —for conventional programmingdata types;viz.., types such as those used in most
popular programming languages such asJava, C#, orC/C++, etc.., . . .

• “class”—for types of objects,

• “sort” —for mathematical set-denoting symbols,

• “kind” —for types of types (as used in Type Theory),

• “domain”—for finite-domain or interval constraints,

• “extension”—for the set of values populating a type.

In the AI literature, some also use the term“concept” to denote a set—i.e., a monadic relation.
We will too when we deal with Description Logic expressions as constraints,to emphasize the
connection.

3.1 Order-sorted feature constraints

We recall briefly here the essentials of a constraint formalism for order-sorted featured (OSF)
objects and classes.

In (Aı̈t-Kaci and Nasr, 1986),ψ-terms were proposed as flexible record structures for logic
programming. Indeed, we shall see thatψ-terms are a generalization of first-order terms. However,
ψ-terms are of wider interest. Since first-order terms are the pervasive data structures used by
symbolic programming languages, whether based on predicate or equational logic, the more flexible
ψ-terms offer an interesting alternative as a formal data model for expressing computation over
typed attributed objects using pattern-directed rules.

The easiest way to describe aψ-term is with an example. Here is aψ-term that may be used to
denote a genericperson object structure:

P : person(name ⇒ id(first ⇒ string,
last ⇒ S : string),

age ⇒ 30,
spouse ⇒ person(name ⇒ id(last ⇒ S),

spouse ⇒ P )).

(6)

Namely, a 30 year-old person who has a name in which the first and last parts are strings, and whose
spouse is a person sharing his or her last name, that latter person’s spouse being the first person in
question.

This expression looks like a record structure. Like a typical record, it has field names;i.e., the
symbols on the left of⇒. We call thesefeaturesymbols. In contrast with conventional records,
however,ψ-terms can carry more information. Namely, the fields are attached tosort symbols (e.g.,
person, id, string, 30,etc.). These sorts may indifferently denote individual values (e.g., 30)
or sets of values (e.g., person, string). In fact, values are assimilated to singleton-denoting
sorts. Sorts are partially ordered so as to reflect set inclusion;e.g., employee < person means

47



HASSAN A ÏT-KACI

that allemployees arepersons. Finally, sharing of structure can be expressed withvariables
(e.g., P andS). This sharing may be circular (e.g., P ).

In what follows, we see how these terms may be interpreted as logical constraints calledOSF
constraints. More precisely,ψ-terms correspond toOSF constraints in solved form. Next, we
define a simple constraint formalism for expressing, and reasoning with, sorted attributed structures.
The reader may wish to consult Appendix Section B for needed formal notions.

3.1.1 OSF ALGEBRAS

An OSF Signatureis given by〈S,≤,∧,F〉 such that:

• S is a set ofsortscontaining the sorts⊤ and⊥;

• ≤ is a decidable partial order onS such that⊥ is the least and⊤ is the greatest element;

• 〈S,≤,∧〉 is a lower semilattice (s ∧ s′ is called the greatest common subsort ofs ands′);

• F is a set offeature symbols.

Referring to theψ-term example (6), the set of sortsS contains set-denoting symbols such as
person, id, andstring. The set of featuresF contains function-denoting symbols—symbols
on the left of⇒—such asname, name, first, last, spouse, etc., . . . The ordering on the
sortsS denotes set inclusion and the infimum operation∧ denotes set intersection. Therefore,⊤
denotes the all-inclusive sort (the set of all things), and⊥ denotes the all-exclusive sort (the set of
no things). This is formalized next.

Given anOSF signature〈S,≤,∧,F〉, anOSF algebrais a structure:

A = 〈DA, (sA)s∈S , (f
A)f∈F 〉

such that:

• DA is a non-empty set, called thedomainof A;

• for each sort symbols in S, sA is a subset of the domain; in particular,⊤A = DA and
⊥A = ∅;

• (s ∧ s′)A = sA ∩ s′A for two sortss ands′ in S;

• for each featuref in F , fA is a total unary function from the domain into the domain;i.e.,
fA : DA 7→ DA.

The essence of meaning-preserving mappings betweenOSF algebras is that they should respect
feature application and sort inclusion. Thus, anOSF homomorphismγ : A 7→ B between two
OSF algebrasA andB is a functionγ : DA 7→ DB such that:

• γ(fA(d)) = fB(γ(d)) for all d ∈ DA;

• γ(sA) ⊆ sB.

The notion of interest for inheritance is that ofOSF endomorphism. That is, when anOSF
homomorphismγ is internal to anOSF algebra (i.e., A = B), it is called anOSF endomorphism
of A. This means:

• ∀f ∈ F ,∀d ∈ DA, γ(fA(d)) = fA(γ(d))

48



DATA MODELS AS CONSTRAINT SYSTEMS

• ∀s ∈ S, γ(sA) ⊆ sA

As pictured in Figure 3, this definition captures formally and preciselyinheritance of attributes
as used,e.g., in object-oriented classes, semantic networks, and formal ontological logics defin-
ing concept hierarchies. Namely, a conceptC1 (the subconcept) inherits from a conceptC2 (its

γ(s)

s

f(γ(s)) = γ(f(s))

f(s)

γ

γ

f

f

Figure 3:Property inheritance asOSF endomorphism

superconcept)if and only if there exists anOSF endormorphism taking the set denoted by the
superconceptC2 to the set denoted by the subconceptC1.

3.1.2 OSF TERMS

AnOSF term t is an expression of the form:X : s(f1 ⇒ t1, . . . , fn ⇒ tn) whereX is a variable
in V, s is a sort inS, f1, . . . , fn are features inF , n ≥ 0, t1, . . . , tn areOSF terms, and whereV
is a countably infinite set of variables.

Given a termt = X : s(f1 ⇒ t1, . . . , fn ⇒ tn), the variableX is called itsroot variable and
sometimes referred to asROOT(t). The set of all variables occurring int is defined asVAR(t) =
{ROOT(t)} ∪

⋃n
i=1 VAR(ti).

Given a termt as above, anOSF interpretationA, and anA-valuationα : V 7→ DA, the
denotationof t is given by:

[[t]]A,α DEF
== {α(X)} ∩ sA ∩

⋂

1≤i≤n

(fA
i )−1([[ti]]

A,α). (7)

49



HASSAN A ÏT-KACI

Hence, for a fixedA-valuationα, [[t]]A,α is either the empty set or the singleton set{α(ROOT(t))}.
In fact, it isnot the empty set if and only if the valueα(ROOT(t)) lies in the denotation of the sort
s, as well as each and every inverse image by the denotation of featurefi of the denotation of the
corresponding subterm[[ti]]A,α under the sameA-valuationα. Thus, the denotation of anOSF term
t for all possible valuations of the variables is given by the set:

[[t]]A
DEF
==

⋃

α:V7→DA

[[t]]A,α. (8)

Definition 3 (OSF Term Subsumption) Let t andt′ be twoOSF terms. Then,t ≤ t′ (“ t is sub-
sumedby t′”) if and only if, for all OSF algebrasA, [[t]]A ⊆ [[t′]]A.

An OSF termt = X : s(f1 ⇒ t1, . . . , fn ⇒ tn) is said to be“in normal form” whenever all
the following properties hold:

• s is a non-bottom sort inS;

• f1, . . . , fn are pairwise distinct features inF , n ≥ 0,

• t1, . . . , tn are allOSF terms innormal form,

• no variable occurs int with more than one non-⊤ sort. That is, ifV occurs int both asV : s
andV : s′, thens = ⊤ or s′ = ⊤.

An OSF term in normal form is called a“ψ-term.” We callΨ the set of allψ-terms.

3.1.3 OSF CONSTRAINTS

A logical reading of anOSF term is immediate as its information content can be characterized by
a simple formula. For this purpose, we need a simple clausal language as follows.

An atomicOSF constraintis one of (1)X : s, (2)X
.
= X ′, or (3)X.f

.
= X ′, whereX and

X ′ are variables inV, s is a sort inS, andf is a feature inF . A (conjunctive)OSF constraintis a
conjunction (i.e., a set) of atomicOSF constraintsφ1 & . . . & φn. Given anOSF algebraA, an
OSF constraintφ is satisfiablein A, A, α |= φ, if there exists a valuationα : V 7→ DA such that:

A, α |= X : s iff α(X) ∈ sA;
A, α |= X

.
= Y iff α(X) = α(Y );

A, α |= X.f
.
= Y iff fA(α(X)) = α(Y )

A, α |= φ & φ′ iff A, α |= φ and A, α |= φ′.

(9)

We can always associate with anOSF termt = X : s(f1 ⇒ t1, . . . , fn ⇒ tn) a correspond-
ingOSF constraintϕ(t) as follows:

ϕ(t)
DEF
== X : s & X.f1

.
= X1 & . . . & X.fn

.
= Xn

& ϕ(t1) & . . . & ϕ(tn)
(10)

whereX1, . . . , Xn are the roots oft1, . . . , tn, respectively. We say thatϕ(t) is obtained from
dissolving theOSF term t. It has been shown that the set-theoretic denotation of anOSF term
and the logical semantics of its dissolved form coincide exactly (Aı̈t-Kaci and Podelski, 1993):

[[t]]A
DEF
== {α(X) | α ∈ VAL (A), A, α |= C∃

t (X)}

whereCt[X] is shorthand for the formulaX
.
= ROOT(t) & ϕ(t), andC∃

t [X] abbreviates the
formula∃VAR(t) Ct[X].

50



DATA MODELS AS CONSTRAINT SYSTEMS

3.1.4 OSF UNIFICATION

Definition 4 (SolvedOSF Constraints) AnOSF constraintφ is said to be insolved formif for
every variableX, φ contains:

• at most one sort constraintX : s, with⊥ < s; and,

• at most one feature constraintX.f
.
= X ′ for eachf ;

• if X
.
= X ′ ∈ φ, thenX does not appear anywhere else inφ.

Again, given anOSF constraintφ, non-deterministically applying any applicable rule among
the rules shown in Figure 4 until none apply will always terminate in the inconsistent constraint or
a solvedOSF constraint. Each of these rules can easily be shown to be correct. They can also
just easily be shown to be confluent modulo variable renaming. The rules ofFigure 4 are solution-

(O1) SORT I NTERSECTION : φ & X : s & X : s′

φ & X : s ∧ s′

(O2) I NCONSISTENT SORT: φ & X : ⊥

X : ⊥

(O3) FEATURE FUNCTIONALITY : φ & X.f
.
= X ′ & X.f

.
= X ′′

φ & X.f
.
= X ′ & X ′ .= X ′′

(O4) VARIABLE ELIMINATION :�
if X 6= X ′ and X ∈ VAR(φ)

� φ & X
.
= X ′

φ[X/X ′] & X
.
= X ′

(O5) VARIABLE CLEANUP : φ & X
.
= X

φ

Figure 4:BasicOSF-constraint normalization rules

preserving, finite terminating, and confluent (modulo variable renaming). Furthermore, they always
result in a normal form that is either the inconsistent constraint or anOSF constraint in solved
form (Aı̈t-Kaci and Podelski, 1993). These rules are all we need to perform the unification of two
OSF terms. Namely, two termst1 and t2 areOSF unifiable if and only if the normal form of
ROOT(t1)

.
= ROOT(t2) & t1 & t2 is not⊥.

An OSF constraintφ in solved form is always satisfiable in a canonical interpretation—viz..,
theOSF graph algebraΨ (Aı̈t-Kaci and Podelski, 1993). As a consequence, theOSF-constraint
normalization rules yield a decision procedure for the satisfiability ofOSF constraints.

51



HASSAN A ÏT-KACI

3.1.5 DISJUNCTION AND NEGATION

We now extend basicOSF terms to express disjunctive and negative information. The syntax of
OSF terms is generalized as shown in Figure 5. We use the standard BNF grammar notation where
‘ [X]’ means “optionalX”, ‘X∗’ means “a sequence of zero or moreX ’s”, and ‘X+’ means “a
sequence of one or moreX ’s.” Next, we explain what these new constructs mean and how they are
handled as constraints.

OSFTERM ::= [ VARIABLE : ] TERM

TERM ::= CONJUNCTIVETERM

| DISJUNCTIVETERM

| NEGATIVETERM

CONJUNCTIVETERM ::= SORT [ ( ATTRIBUTE+ ) ]

ATTRIBUTE ::= FEATURE ⇒ OSFTERM

DISJUNCTIVETERM ::= { OSFTERM [ ; OSFTERM ]∗ }

NEGATIVETERM ::= ¬ OSFTERM

Figure 5:ExtendedOSF term syntax

§Disjunction – In Section 3.1.1, theOSF sort signatureS is required to be a (lower) semilattice
with ⊤ and⊥. This means that a uniqueGLB exists for any pair of sorts. Yet, it is common to
find sort signatures for which this is not the case. For example, the sort signature shown in Figure 6
violates this condition; therefore, it is not a semilattice.

⊤

vehicle four wheeler

car van

⊥

Figure 6:Example of a non-semilattice sort signature

52



DATA MODELS AS CONSTRAINT SYSTEMS

However, since the ordering on sorts denotes set inclusion, sort conjunction denotes set intersec-
tion and is theGLB for the sort ordering. Therefore, by semantic duality, sortdisjunctiondenotes
set union and isthe least upper bound(LUB ) of two sorts. Hence, adisjunctiveOSF term is an ex-
pression of the form{t1; . . . ; tn} wheren ≥ 0, andti is either a conjunctiveOSF term as defined
in Section 3.1.2 or again a disjunctiveOSF term.

The denotation of a disjunctive term is simply the union of the denotations of its constituents.
Namely, given anOSF interpretationA, and anA-valuationα : V 7→ DA:

[[{t1; . . . ; tn}]]
A,α DEF

==
⋃

1≤i≤n

[[ti]]
A,α. (11)

Thus, it follows from the interpretation of a disjunctiveOSF term{t1; . . . ; tn} that, whenn = 0,
{} ≃ ⊥; and, whenn = 1, {t} ≃ t.

Similarly, a disjunctiveOSF constraintis a construct of the formφ1 ‖ . . . ‖ φn, where the
φi’s are either atomicOSF constraints, conjunctiveOSF constraints as defined in Section 3.1.3,
or again disjunctiveOSF constraints. Given anOSF algebraA, a disjunctiveOSF constraint
φ ‖ φ′ is satisfiablein A iff either φ or φ′ is satisfiable inA. Namely,

A, α |= φ ‖ φ′ iff A, α |= φ or A, α |= φ′. (12)

TheOSF-constraint normalization rules handling disjunction are given in Figure 7. They simply

(O6) NON-UNIQUE GLB :�
if si ∈ max≤{t ∈ S | t ≤ s and t ≤ s′}
∀i, i = 1, . . . , n

� φ & X : s & X : s′

φ &
(

X : s1 ‖ . . . ‖ X : sn

)

(O7) DISTRIBUTIVITY : φ &
(

φ′ ‖ φ′′
)

(

φ & φ′
)

‖
(

φ & φ′′
)

(O8) DISJUNCTION : φ ‖ φ′

φ

Figure 7:Disjunctive OSF-constraint normalization

consist in non-deterministic branching in the direction of either of the disjuncts. Recall that all
our normalization rules work up to associativity, commutativity, and idempotenceof both the &
and ‖ operators. TheOSF term-dissolving functionϕ is extended to disjunctiveOSF termsby
transforming them into disjunctiveOSF constraintsas follows:

ϕ({t1; . . . ; tn})
DEF
== ϕ(t1) ‖ . . . ‖ ϕ(tn).

Note that we can as well extend the syntax ofOSF terms by allowing disjunctive sorts where
sort symbols are expected. A disjunctive sort is of the form{s1; . . . ; sn}, where thesi’s are either

53



HASSAN A ÏT-KACI

sort symbols inS or again disjunctive sorts. In this case:

ϕ
(

X : {s1; . . . ; sm}(fi ⇒ ti)
n
i=1

) DEF
== ϕ

(

X : s1(fi ⇒ ti)
n
i=1

)

‖ . . . ‖ ϕ
(

X : sm(fi ⇒ ti)
n
i=1

)

.

§Negation –We proceed similarly for negation. Namely, the denotation of the negativeOSF term
¬t, given anOSF interpretationA andA-valuationα : V 7→ DA, is defined by:

[[¬t]]A,α DEF
== DA\[[t]]A,α. (13)

Accordingly, theOSF term-dissolving functionϕ is extended by the equations shown in Fig. 8,
whereX ′

i is a new variable andXi = ROOT(ti) is the root variable ofti, for i = 1, . . . , n andn ≥ 0,
and:

ς(X : s)
DEF
==











ς(X : s′) if s = s′,

ς(X : s1) & . . . & ς(X : sn) if s = {s1; . . . ; sn},
X : s otherwise.

ϕ(¬(¬t))
DEF
== ϕ(t)

ϕ(¬{t1; . . . ; tn})
DEF
== ϕ(¬t1) & . . . & ϕ(¬tn)

ϕ(¬X : s(fi ⇒ ti)
n
i=1)

DEF
== ς(X : s) ‖ X.f1

.
= X1 & ϕ(¬t1)

‖ X.f1
.
= X ′

1 & X ′
1 6
.
= X1 & ϕ(t1)

. . . ‖ X.fn
.
= Xn & ϕ(¬tn)

‖ X.fn
.
= X ′

n & X ′
n 6
.
= Xn & ϕ(tn)

Figure 8:NegativeOSF term dissolution

Thus, dissolving a negativeOSF constraint transforms it into a possibly disjunctiveOSF
constraint where the symbol ‘¬’ no longer occurs, and atomic constraints are as before, but also
disequality constraintsX 6

.
= Y and complemented sort constraints of the formX : s, forX,Y ∈ V

ands ∈ S. The notations, for s ∈ S, denotes thecomplementof sorts; viz., sA DEF
== DA\sA.

Satisfiability of the new atomicOSF disequalityconstraintX 6
.
= X ′, forX ∈ V, is defined as:

A, α |= X 6
.
= X ′ iff α(X) 6= α(X ′). (14)

Because dissolution of a negativeOSF term eliminates the negation symbol ‘¬’ altogether by
introducing complemented sorts and disequalities among variables, we need twoadditional rules
for normalizing negativeOSF constraints. They are given in Figure 9.

3.1.6 ADDITIONAL AXIOMS

The set ofOSF-constraints normalization rules presented thus far may be strengthened withuse-
ful additional axioms that enable important functionality commonly found in object/class-based
systems—viz.., partial features, element sorts, andaggregates. We next describe additional rules
that achieve such functionality while preserving confluence and finite termination when combined
with the previousOSF constraint-normalization rules.

54



DATA MODELS AS CONSTRAINT SYSTEMS

(O9) DISEQUALITY : φ & X 6
.
= X

⊥

(O10) COMPLEMENT :�
if s′ ∈ max≤{t ∈ S | s 6≤ t and t 6≤ s}

� φ & X : s

φ & X : s′

Figure 9:NegativeOSF-constraint normalization

§Partial features – Given a feature f, itsdomainDOM(f) is the set of maximal sorts{s1, . . . , sn}
in S such thatf is defined—i.e., DOM : F 7→ 2

S . A featuref such that isDOM(f) = {⊤} is
said to betotal. A featuref is nowhere defined wheneverDOM(f) = {⊥}. It is partial when
it is not total although defined on some non bottom sort. Given a featuref ∈ F , for each sort
s ∈ DOM(f), therangeof f in s is the sortRANs(f) ∈ S of values taken by featuref on sorts.
TheOSF-constraint normalization rule for enforcing such partial features is shown as“Partial Fea-
ture” in Figure 10. Computational linguists, who have borrowed heavily from theOSF formalism
to express HPSG grammars for natural-language processing, call the axiom enforced by this rule
“feature appropriateness” (Carpenter, 1991).

(O11) PARTIAL FEATURE :�
if s ∈ DOM(f) and RANs(f) = s′

� φ & X.f
.
= X ′

φ & X.f
.
= X ′ & X : s & X ′ : s′

(O12) WEAK EXTENSIONALITY :�
if s ∈ E and ∀f ∈ ARITY (s) :
{X.f

.
= Y, X ′.f

.
= Y } ⊆ φ

� φ & X : s & X ′ : s

φ & X : s & X
.
= X ′

(O13) VALUE AGGREGATION :�
if s ands′ are both subsorts of
commutative monoid〈⋆,1⋆〉

� φ & X = e : s & X = e′ : s′

φ & X = e ⋆ e′ : s ∧ s′

Figure 10:Additional OSF-constraint normalization rules

§Element sorts –A sort denotes a set. When this set is a singleton, the sort is assimilated to the
value contained in the denoted singleton. The normalization rules to do so are as follows.

Let E (for “element,” or “extensional,” sorts) be the set of sorts inS that denote singletons.
Define thearity ARITY (e) of such an element sorte giving its feature arityas a set of features—

55



HASSAN A ÏT-KACI

i.e., ARITY : E 7→ 2
F . The setARITY (e) is the set of features that completely determine the

unique element of sorte. In other words, whenever all features ofARITY (e) denote singletons,
then so doese. All such values ought to be uniquely identified. Note in passing that all atomic
constants inE always have empty arity. For example, for any numbern, ARITY (n) = ∅. The
OSF-constraint normalization rule that enforces this uniqueness axiom on element sorts is called
“Weak Extensionality”as shown in Figure 10.

With this rule, for example, ifS = {⊤,⊥,nil,cons,list,nat, 0, 1, 2, . . .} such thatnil <
list, cons < list, n < nat for n ∈ N (where< is the subsort ordering). LetE =
{nil,cons, n}, (n ∈ N), such thatARITY (nil) = ∅, ARITY (cons) = {head,tail}, and
ARITY (n) = ∅ for n ∈ N. Then, theOSF term:

X : cons(head ⇒ 1,tail ⇒ nil) & Y : cons(head ⇒ 1,tail ⇒ nil)

is normalized into:

X : cons(head ⇒ 1,tail ⇒ nil) & X = Y

This rule is called“weak” because it can only enforce uniquess ofacyclicelements. Rules enforcing
the necessary stronger condition for cyclic terms can also be given (seeAppendix Section C).
§Relational features and aggregation –TheOSF formalism deals with functional features. How-
ever, relational features may also come handy. A relational feature is a binary relation or, equiva-
lently, a set-valued function. In other words, a multi-valued functional attribute may be aggregated
into sets. Such a set-valued feature is called a“role” or “property” in DL lingo (e.g., in OWL)—
see Section 3.2. Indeed, combining rules“Sort Intersection”with “Feature Functionality”(see
Figure 4) enforces that a variable’s sort, and hence value, may only becomputed by intersection of
consistent sorts. On the other hand, a relational feature denotes a set-valued function, and normal-
ization must thus provide a means to aggregate mutually distinct values of some sort.

This semantics is easily accommodated with the following value aggregation rule, which gen-
eralizes the“Sort Intersection”rule. Incidentally, computing sort intersection is doable in constant
time by encoding sorts as binary vectors as shown in (Aı̈t-Kaci et al., 1989). This is a tremendous
source of efficiency when compared to an encoding of a class hierarchy’s partial order using sym-
bolic FOL rules, as done in F-Logic for example (Kifer et al., 1995). The notation for the atomic
constraint “X : s” is generalized to carry an optional valuee ∈ E (i.e., e is an extensional sort):
“X = e : s” means “X has valuee of sort s”—whereX ∈ V, e ∈ E , s ∈ S. The shorthand
“X = e” means “X = e : ⊤.” When the sorts ∈ S is a commutative monoid〈⋆,1⋆〉, the shorthand
“X : s” means “X = 1⋆ : s.”

The semantics conditions (9) are simply extended with:

A, α |= X = e : s iff eA ∈ sA and α(X) = eA. (15)

Now, recall that any monoidM = 〈⋆,1⋆〉 is quasi-ordered with the⋆-prefix relation≺⋆. This
quasi-ordering (or preorder) is the natural approximation ordering for elements of the monoid.
Thus, element values of a sort that denotes a commutative monoid may be composed using this
monoid’s operation. In particular, such a monoid operation may be that of aset constructor—i.e.,
anassociative commutative idempotentconstructor.

Note that the“Value Aggregation”rule in Figure 10 is more general than need be for just accom-
modating sets. Indeed, it can accommodate other collection structures such as lists (free monoid),

56



DATA MODELS AS CONSTRAINT SYSTEMS

multisets (commutative non-idempotent), or even other computed (as opposed toconstructed) com-
mutative aggregation operations such as min, max, sum, product,etc., . . . Thus, one may use this
rule by usingAGGREGATE (f, s,m, ⋆,1⋆) to declare that featuref takes values in sort rangem
denoting a specific commutative monoid〈⋆,1⋆〉 whenf is applied on sorts (i.e., s ∈ DOM(f) and
RANs(f) = m). In other words,

X : s & X.f
.
= Y & Y = 1⋆ : m. (16)

Then, Rule“Partial Feature”used in conjunction with Rule“Value Aggregation”rule of Fig. 10
will work correctly.

Note also that we require acommutativemonoid to ensure confluence of this rule with the other
OSF-constraint normalization rules in a non-deterministic normalization setting. In other words,
the order in which the rules are applied does not matter on the outcome of the aggregation. Hence,
the∗ operation on the two valuese ande′ may then be defined as the appropriate aggregation. Thus
may elements be aggregated by constraint normalization into any suitable form we wish (e.g., list,
set, multiset, sum, product, min, max, and, or,etc., . . . ). The notion of a monoid is all we need to
express very powerful aggregative data structures such as themonoid comprehensionscalculus (Fe-
garas and Maier, 2000; Grust, 2003). Indeed, theλ-calculus can be simply and effectively extended
with the power of aggregative monoidal structures (i.e., lists, sets, multisets) and accumulators (i.e.,
sum, product, min, max,etc..) using a simple notion ofmonoid homomorphism, which provides an
elegant formalism way to express declaratively iterative computation over aggregative constructs.

Decidability results concerning the differences between attributive concepts using functional
featuresvs. relation roles are reviewed in (Schmidt-Schauß and Smolka, 1991). Aggregation has
also been considered in the same setting in (Baader and Sattler, 1997) with similar decidability
results. This last work offers intriguing potential connections with the paradigm of declarative ag-
gregation as described in (Fegaras and Maier, 2000) or (Grust, 2003) where a versatile computable
algebraic theory of monoid comprehensions is defined in terms of monoid homomorphisms allow-
ing the perspicous declarative descriptions of aggregates. The monoid comprehension calculus is
a conservative extension of theλ-calculus and the object-relational model, and enjoys algebraic
properties that greatly facilitate query optimization.
§Ontology unfolding – Description Logics support the notion ofterminology, or TBox, which is a
means to define concepts in terms of other concepts (Baader and Nutt, 2003). In other words, a TBox
specifies equations defining non-primitive concepts in terms of base concepts and themselves, thus
allowing cyclic concept definitions. These may be viewed as recursive type equations and may be
solved semantically and proof-theoretically depending on the nature of theDL one uses (Äıt-Kaci,
1984, 1986; Bucheit et al., 1993; Baader and Nutt, 2003).

TheOSF formalism offers a terminological facility also in the form of sort equations (Aı̈t-Kaci
et al., 1997). This is what we call aconceptual ontologysince it defines concepts. It may be viewed
as a schema abbreviating some sorts in terms of others. We restrict ourselves to sort equations of
the forms ≡ t, wheres is a sort andt is anOSF term, as forDL’s TBox definitions (Baader and
Nutt, 2003). More exactly,DL does not useOSF terms butDL concept expressions, and it does
not deal with path equality constraints. We call such a “TBox” anOSF theory.

Clearly, expressivity of theOSF constraint calculus is greatly enhanced when sorts may be
recursively defined, especially when variables may appear in sort definitions (Äıt-Kaci et al., 1997;
Zajac, 1992; Krieger and Schäfer, 1994). A conceptual ontology is in fact very close to a class

57



HASSAN A ÏT-KACI

schema definition in object-oriented programming. Although in object-oriented programming, typ-
ically, classes and object do not enjoy the expressivity offered by either ψ-terms orDL concept
expressions. Objects are made according to blueprints specified as (recursive)classdefinitions. A
class acts as a template, restricting the aspect of the objects that are its instances. Thus, a con-
venience for expressing conceptual ontologies in the form ofsort definitionsis provided by the
OSF formalism, expanding in this way the capability of the basic and additionalOSF axioms of
Figures 4 and 10 to express more complex integrity constraints on objects.

This enables an incompletely specified object to remain always consistent withits class as infor-
mation accrues about this object. A sort definition associates aψ-term structure to a sort. Intuitively,
one may then see a sort as anabbreviationof a more complex structure. Hence, a sort definition
specifies a template that an object of this sort must abide by, whenever it uses any part of the struc-
ture appearing in theψ-term defining the sort.

For example, consider theψ-term:

person(name ⇒ ⊤(last ⇒ string),
spouse ⇒ ⊤(spouse ⇒ ⊤,

name ⇒ ⊤(last ⇒ "Smith"))).

Without sort definitions, there is no reason to expect that this structure should be incomplete, or
inconsistent, as intended. Let us now define the sortperson as an abbreviation of the structure:

P : person(name ⇒ id(first ⇒ string,
last ⇒ S : string),

spouse ⇒ person(name ⇒ id(last ⇒ S),
spouse ⇒ P )).

This definition of the sortperson expresses the expectation whereby, whenever aperson object
has featuresname andspouse, these should lead to objects of sortid andperson, respectively.
Moreover, if the featuresfirst andlast are present in the object indicated byname, then they
should be of sortstring. Also, if aperson object had sufficient structure as to involve feature
pathsname.last andspouse.name.last, then these two paths should lead to the same object.
And so on.

For example, with this sort definition, theperson object with last name"Smith" above
should be made to comply with the definition template by beingnormalizedinto the term:

X : person(name ⇒ id(last ⇒ N : "Smith"),
spouse ⇒ person(spouse ⇒ X,

name ⇒ id(last ⇒ N))).

In this example, it is assumed, of course, that"Smith" < string.
Note that sort definitions are notfeature declarations. Namely, sort definitions do not enforce

the existence, or lack thereof, of the specified features that appear in asort’s definition for every

58



DATA MODELS AS CONSTRAINT SYSTEMS

object of that sort. This kind of consistency checking is performed by sort signatures schema con-
straints enforced by rules such as the“Partial Feature”OSF-constraint normalization rule in Fig-
ure 10 using the declared domains and ranges of features. Rather, a sort’s definition specifies sort
and equality constraints on feature paths from the sort being defined. For instance, we could use
person(hobby ⇒ movie going) without worrying about violating the template forperson
since the featurehobby is not constrained by the sort definition ofperson. However, it could be
further constrained by declaring featurehobby ’s domains and ranges.

This lazy inheritance of structural constraints from the class template into an object’s structure
is invaluable for efficiency reasons. Indeed, if all the (possibly voluminous) template structure of a
sort were to be systematically expanded into an object of this sort that usesonly a tiny portion of it,
space and time would be wasted. More importantly, lazy inheritance is a way to ensure termination
of consistency checking. For example, the sort definition ofperson above is recursive, as it
involves the sortperson in its body. Completely expanding these sorts into their templates would
go on for ever.

An incidental benefit of sort-unfolding in the context of a sort semilattice is what we callproof
memoizing. Namely, once the definition of a sort for a variableX has been unfolded, and the
attached constraints proven forX, this proof is automatically and efficiently recorded by the ex-
panded sort. The accumulation of proofs corresponds exactly to the greatest lower bound operation.
Besides the evident advantage of not having to repeat computations, this memoizing phenomenon
accommodates expressions that would loop otherwise.

Let us take a small example to illustrate this point. Lists can be specified by declaring nil
andcons to be subsorts of the sortlist and by defining for the sortcons the templateψ-term
cons(head ⇒ ⊤,tail ⇒ list). Now, consider the expressionX : [1|X], the circular list
containing the one element 1—i.e., desugared asX : cons(head ⇒ 1,tail ⇒ X). Verifying
thatX is a list, since it is thetail of acons, terminates immediately on the grounds thatX has
already been memoized to be acons, andcons < list. In contrast, the semantically equivalent
Prolog program with two clauses:list([]) andlist([H|T ]) :- list(T ) would make the goal
list(X : [1|X]) loop. (See Sections 1.2 and 3.3.4.)

A formal and practical solution for the problem of checking the consistency of aψ-term object
modulo a sort hierarchy of structural class templates is described in (Aı̈t-Kaci et al., 1997). The
problem (called“OSF theory unification”) is formalizable in First-Order Logic (FOL): objects as
OSF constraint formulae, classes as axioms defining anOSF theory, class inheritance as testing
the satisfiability of anOSF constraint in a model of theOSF theory. As a result, models for
OSF theories may be shown to exist. It is shown in (Aı̈t-Kaci et al., 1997) that theOSF theory
unification problem is undecidable. However, checking the consistency of anOSF term modulo an
OSF theory is semi-decidable. This is achieved by constraint normalization rules forOSF theory
unification given in (Äıt-Kaci et al., 1997), which is complete for detecting incompatibility of an
object with respect to anOSF theory;i.e., checking non-satisfiability of a constraint in a model of
the axioms. This system specifies the third Turing-complete calculus used in LIFE (Aı̈t-Kaci and
Podelski, 1993), besides its logical (Horn rules overψ-terms) and the functional one (rewrite rules
overψ-terms).

Remarkably, theOSF-theory constraint normalization rule system given in (Aı̈t-Kaci et al.,
1997) enjoys an interesting property: it consists of a set of ten meaning-preserving syntax-transfor-
mation rules that is partitioned into two complementary rule subsets: a system of nine confluent and

59



HASSAN A ÏT-KACI

terminatingweak rules, and one additionalstrongrule, whose addition to the other rules preserves
confluence, but may lead to non-termination. There are two nice consequences of this property:

1. it yieldsa complete normalization strategyconsisting of repeatedly normalizing a term first
with the terminating rules, and then apply, if at all necessary, the tenth rule; and,

2. it provides a formally correctcompilation schemeofOSF theories (i.e., multiple-inheritance
constrained class hierarchies) by partial evaluation since all sort definitions of a theory can be
normalized with respect to the theory itself using only the weak rules.

3.2 Description logic

Description Logic (DL) is a formal language for describing simple sets of objects—calledcon-
cepts—that are subsets of elements of a domain of interpretation, and properties thereof—called
roles—that are binary relations on this universe.

3.2.1 DL SYNTAX

DL’s syntax is defined by a grammar of expressions forconcept descriptionsmaking up complex
concepts by combining simpler ones with operators denoting elementary set operations. As is the
case forOSF logic, there are many variations ofDL languages—DL dialects—depending on
how expressive one needs to be; that is, what specific constructs aresupported. This entails as
many computational and decidability properties enjoyed by (or plaguing) the various expressivity
classes of such logical dialects. Which particularDL dialect one should be concerned with matters
only regarding the kinds of inferences one expects to be able to carry out in it, and how inherently
expensive in time and space these are. The specificDL dialects we mention here and there in this
paper are simply for illustration. See (Heinsohn et al., 1994) for a thorough survey and comparative
analysis of such dialects. The interested reader is also referred to (Lunz, 2006) and (Lambrix, 2006)
for a plethora of up-to-date information onDL literature and (re)sources.

Figure 11 gives grammar rules for a few popularDL constructs that may be used to build
concept and role expressions. In the grammar of Figure 11, the non-terminal symbols ‘CONCEPT’
and ‘ROLE’ derive respectivelyconceptandrole expressions. The terminal symbol ‘Name’ is used
to stand for names of primitive concepts and roles, as well as constant individual elements of some
domain of interpretation. LetC [resp.,R] be the set of concept [resp. role] expressionsC [resp.R]
generated by this grammar.

In the following sections, we quickly overview a simple set-theoretic denotational semantics
for DL constructs and a syntax-directed constraint-based deductive system for reasoning withDL
knowledge.

3.2.2 DL SEMANTICS

Let I beDL-interpretation structure with domainDI, a (possibly countably infinite) set. Names of
constants denote atomic concepts (i.e., subsets ofDI), atomic roles (i.e., subsets ofDI ×DI), or
individual elements inDI. Thus, letCName [resp.,RName; or, resp.,IName] be the subset ofDI

[resp., the subset ofDI×DI; or, the individual element inDI] that the symbolName denotes.
Given a setS, the notation|S| denotes the cardinality ofS. Given setsA, B, andC, and two

binary relationsα ⊆ A×B andβ ⊆ B×C, theircompositionis the binary relationα◦β ⊆ A×C
defined as:α ◦ β

DEF
== {〈x, y〉 ∈ A× C | ∃z ∈ B, 〈x, z〉 ∈ α and 〈z, y〉 ∈ β}.

60



DATA MODELS AS CONSTRAINT SYSTEMS

CONCEPT ::= ⊤ top concept
| ⊥ bottom concept
| Name atomic concept
| {Name, . . . ,Name} concept extension
| CONCEPT⊓ CONCEPT conjunctive concept
| CONCEPT⊔ CONCEPT disjunctive concept
| ¬CONCEPT negative concept
| ∀ROLE.CONCEPT universal-role concept
| ∃ROLE.CONCEPT existential-role concept
| ≤ n.ROLE role max-cardinality concept
| ≥ n.ROLE role min-cardinality concept

ROLE ::= Name atomic role
| ROLE ⊓ ROLE conjunctive role
| ROLE • ROLE composite role

Figure 11:Syntax rules for commonDL concept and role constructs

Given a roleR anda, b in DI, whenever〈a, b〉 ∈ [[R]]Ir , we say thata is asubjectof b for R (or
anR-subjectof b), and we say thatb is anobject of a for R (or anR-object of a). Forx andy in
DI, we writeR[x] to denote the set of allR-objects ofx, andR−1[y] the set of allR-subjects ofy.
That is,

∀x ∈ DI R[x]
DEF
== {y ∈ DI | 〈x, y〉 ∈ [[R]]Ir},

∀y ∈ DI R−1[y]
DEF
== {x ∈ DI | 〈x, y〉 ∈ [[R]]Ir}.

(17)

Note that for anyx and y in DI, and rolesR1 andR2, (R1 • R2)[x] = R2[R1[x]] and (R1 •
R2)

−1[y] = R−1
1 [R−1

2 [y]], where,∀S ⊆ DI, R[S]
DEF
==

⋃

x∈S R[x] andR−1[S]
DEF
==

⋃

y∈S R
−1[y]. Note also that, by definition,(R1 ⊓ R2)[x] = R1[x] ∩ R2[x]. Essentially, the set-

theoretic meaning[[C]]Ic of aDL’s concept-description expressionC is a subset of the universe of
discourse, whose elements possibly verify simple conditions on the extent and cardinality of the
object sets of binary relations for which they are subjects. In the sequel,we will simply write [[ ]]I,
or even simpler[[ ]] rather than either[[ ]]Ic or [[ ]]Ir for the semantic mappings whenever it is obvious
from the context which sub/super/script is meant.

The semantics ofDL concept and role expressions is given by the semantic mappings[[ ]]Ic :

C 7→ 2
DI

and[[ ]]Ir : R 7→ 2
DI×DI

defined inductively as shown in Figure 12.
Depending on what concept and role constructs it has, a particularDL will have different ex-

pressivity and decidability results. In other words, expressivity of a givenDL depends on whether
its grammar has just a subset of, or all, the rules in Figure 11, or additional ones—e.g., for express-
ing so-calledrole-value maps; i.e., equality constraints among role composition. For example, the
system obtained by keeping all the rules in Figure 11 except for the one for composite roles is called
ALCNR and has nice properties such as decidability of knowledge-base satisfiability (Bucheit
et al., 1993; Donini et al., 1996). The convention for naming such logics isto use a mnemonic letter

61



HASSAN A ÏT-KACI

[[⊤]]Ic
DEF
== DI

[[⊥]]Ic
DEF
== ∅

[[Name]]Ic
DEF
== CName

[[{Name1, . . . ,Namen}]]Ic
DEF
== {IName1

, . . . ,INamen
}

[[C1 ⊓ C2]]
I
c

DEF
== [[C1]]

I
c ∩ [[C2]]

I
c

[[C1 ⊔ C2]]
I
c

DEF
== [[C1]]

I
c ∪ [[C2]]

I
c

[[¬C1]]
I
c

DEF
== DI\[[C1]]

I
c

[[∀R.C]]Ic
DEF
== {x ∈ DI | R[x] ⊆ [[C]]Ic}

[[∃R.C]]Ic
DEF
== {x ∈ DI | R[x] ∩ [[C]]Ic 6= ∅}

[[≤ n.R]]Ic
DEF
== {x ∈ DI | |R[x]| ≤ n}

[[≥ n.R]]Ic
DEF
== {x ∈ DI | |R[x]| ≥ n}

[[Name]]Ir
DEF
== RName

[[R1 ⊓R2]]
I
r

DEF
== [[R1]]

I
r ∩ [[R2]]

I
r

[[R1 •R2]]
I
r

DEF
== [[R1]]

I
r ◦ [[R2]]

I
r

Figure 12:Semantics of commonDL concept and role constructs

encoding trick for their names: they all start withAL (for Attributive Logic) and we add aU if it
can express for universal roles, anE for existential roles, aC concept complementation, anN for
role number restrictions, and anR for role conjunction. Note that names are not unique per the
logic they denote. For example,ALC andALEU are different names for the sameDL. We prefer
using the shorter names—e.g.,ALC rather than the equivalentALEU (Baader and Nutt, 2003).

Note that from the set-theoretic semantics ofDL in Figure 12, one can derive several syntactic
congruence for theDL syntactic operators. DefiningS ≃ S′ to mean[[S]] = [[S′]], it is easy
to show that all the syntactic equivalences shown in Figure 13 hold. Therefore, we shall always
implicitly consider allDL syntactic constructs modulo these syntactic congruences. Figure 14
shows examples ofDL concept expressions and their meaning. Other concept-forming constructs
may be defined in terms of more primitive ones. For example, it may sometimes come handy to use
the following syntactic shorthand role-cardinality notations:

shorthand  meaning

< n.R  ¬(≥ n.R),

> n.R  ¬(≤ n.R),

= n.R  (≤ n.R) ⊓ (≥ n.R),

6= n.R  (< n.R) ⊔ (> n.R).

62



DATA MODELS AS CONSTRAINT SYSTEMS

¬⊥ ≃ ⊤
¬⊤ ≃ ⊥

{x} ⊔ {y} ≃ {x, y}

C ⊔ ⊥ ≃ C
C ⊔ ⊤ ≃ ⊤

C ⊓ ⊤ ≃ C
C ⊓ ⊥ ≃ ⊥

C ⊔ C ≃ C
C ⊓ C ≃ C

C1 ⊔ C2 ≃ C2 ⊔ C1

C1 ⊓ C2 ≃ C2 ⊓ C1

¬(C1 ⊔ C2) ≃ ¬C1 ⊓ ¬C2

¬(C1 ⊓ C2) ≃ ¬C1 ⊔ ¬C2

(C1 ⊔ C2) ⊔ C3 ≃ C1 ⊔ (C2 ⊔ C3)
(C1 ⊓ C2) ⊓ C3 ≃ C1 ⊓ (C2 ⊓ C3)

C1 ⊔ (C2 ⊓ C3) ≃ (C1 ⊔ C2) ⊓ (C1 ⊔ C3)
C1 ⊓ (C2 ⊔ C3) ≃ (C1 ⊓ C2) ⊔ (C1 ⊓ C3)

Figure 13:SomeDL syntactic congruences

Example Meaning
Human ⊓ Male the set of all things that are humans and males

Doctor ⊔ Lawyer the set of all things that are doctors or lawyers
¬Male the set of all things that are not males

{john,mary} the set{Ijohn, Imary}
∀hasChild.Doctor the set of all things, all of whose children are doctors
∃hasChild.Laywer the set of all things, one of whose children is a lawyer

≤ 1.hasChild the set of all things that have at most one child
≥ 2.hasChild the set of all things that have at least two children

Figure 14:Examples ofDL concept expressions

63



HASSAN A ÏT-KACI

3.2.3 DL KNOWLEDGE BASES

§Terminological vs.assertional knowledge –As mentioned before,DL knowledge (i.e., facts and
properties of the described universe), is represented by storingDL formulae in aknowledge base,
which consists of two complementary parts: aterminologicalknowldege base (orTBox) and an
assertionalknowldege base (orABox). Informally, the TBox defines the concept and role vocabu-
lary and their hierarchical inheritance ordering, while the ABox is the extensional data populating
the various sets and relations. This separation is akin to that of the intensional database , or IDB,
from the extensional database, or EDB, in Datalog. InDL, the TBox is the IDB and the ABox is
the EDB.

Figure 15 shows examples of terminological axioms and their meaning.

DL Syntax Example Meaning
C1 ⊑ C2 Human ⊑ Biped ⊓ Animal humans are biped animals
C1 ≡ C2 Man ≡ Human ⊓ Male men, and only men, are humans and males
C1 ⊑ ¬C2 Male ⊑ ¬Female males are not females
{x1} ≡ {x2} {Tim Berners-Lee} ≡ {TBL} Tim Berners-Lee andTBL are the same individual
{x1} ≡ ¬{x2} {TBL} ≡ ¬{JesusChrist} TBL andJesusChrist are not the same individual
P1 ⊑ P2 hasDaughter ⊑ hasChild anything that has a daughter has also a child
P1 ≡ P2 cost ≡ price something has a cost iff it has also a price
P1 ≡ P−

2 hasChild ≡ hasParent− something has a child iff that child has it as a parent
P+ ⊑ P ancestor+ ⊑ ancestor one’s ancestor’s ancestor in also one’s ancestor
⊤ ⊑ ≥ 1.P ⊤ ⊑ ≥ 1.hasName everything must have at least one name

Figure 15:Examples of terminological axioms

3.2.4 DL REASONING

Reasoning inDL is usually carried out based on Deductive Tableau methods (Schmidt-Schauß
and Smolka, 1991; Bucheit et al., 1993; Donini et al., 1996; Horrocks and Patel-Schneider, 1998;
Horrocks et al., 1999). For example, Figure 16 shows a system of constraint-propagation rules
for theALCNR DL dialect (Bucheit et al., 1993). We call this constraint systemC for Concept
constraint. These rules transform a setS of DL-constraints each of the form either (1)x : C,
(2) xRy, or (3) x 6

.
= y, wherex, y are variables is some setV, C is aDL-concept expression

andR is aDL-role expression of the forms shown in Figure 11. Given such a setS, a variable
x, and a role expressionR, we use the notationRS [x]

DEF
== {y | xRy ∈ S}. For conjunctive

roles,(R ⊓ R′)S [x]
DEF
== RS [x] ∩ R′

S [x], and for composite roles,(R • R′)S [x]
DEF
== {y | y ∈

R′
S [z] for somez ∈ RS [x]}.

The semantics of such constraints is as follows. Given aDL-interpretationI and anI-valuation
α : V 7→ DI:

I, α |= x : C iff α(x) ∈ CI;
I, α |= x 6

.
= y iff α(x) 6= α(y);

I, α |= xRy iff 〈α(x), α(y)〉 ∈ RI;
I, α |= S iff I, α |= φ for all φ ∈ S.

(18)

64



DATA MODELS AS CONSTRAINT SYSTEMS

(C⊓) CONJUNCTIVE CONCEPT:�
if x : (C1 ⊓ C2) ∈ S

and {x : C1, x : C2} 6⊆ S

� S

S ∪ {x : C1, x : C2}

(C⊔) DISJUNCTIVE CONCEPT:�
if x : (C1 ⊔ C2) ∈ S

and x : Ci 6∈ S (i = 1, 2)

� S

S ∪ {x : C1}

(C∀) UNIVERSAL ROLE :24 if x : (∀R.C) ∈ S

and y ∈ RS [x]
and y : C 6∈ S

35 S

S ∪ {y : C}

(C∃) EXISTENTIAL ROLE :264 if x : (∃R.C) ∈ S s.t. R
DEF
==

�d
m

i=1
Ri

�
and z : C ∈ S ⇒ z 6∈ RS [x]
and y is new

375 S

S ∪ {xRiy}mi=1
∪ {y : C}

(C≥) M IN CARDINALITY :264 if x : (≥ n.R) ∈ S s.t. R
DEF
==

�d
m

i=1
Ri

�
and |RS [x]| 6= n

and yi is new(0 ≤ i ≤ n)

375 S

S ∪ {xRiyj}
m,n

i,j=1,1

∪ {yi 6
.
= yj}1≤i<j≤n

(C≤) M AX CARDINALITY :2664 if x : (≤ n.R) ∈ S

and |RS [x]| > n

and y, z ∈ RS [x]
and y 6

.
= z 6∈ S

3775 S

S ∪ S[y/z]

Figure 16:SomeDL-constraint propagation rules (ALCNR)

65



HASSAN A ÏT-KACI

3.3 Examples

We now illustrate how theOSF andDL formalisms may be used with theCLP scheme as data
description languages on which computational rules may be specified.

3.3.1 HERBRAND TERM UNIFICATION ASOSF CONSTRAINT SOLVING

We can recast unification of Herbrand and rational terms as an instance of OSF constraint solv-
ing. In other words, what was covered in Section 2.3.2 using variable/termsubstitutions can be
generalized to the problem of normalizing anOSF constraint corresponding to the labelled-graph
representation of terms. This has the nice consequence of simplifying the formal presentation as
well since it does not need nor use cumbersome term substitutions and their compositions. Most
importantly, the main benefit is a finer grain setting than offered by the Herbrand term unification
algorithm of Figure 2. This allows more commutation flexibility between constraint solving and
rule resolving. Keeping in mind the chemical metaphor, one may think that the moreelementary
the ions in the aqueous solution the easier they are to move and react.

Clearly, a first-order rational term inTΣ,V can be viewed as a particularψ-term. For this, it
suffices to takeS = Σ ∪ {⊤,⊥} andF = N

∗. Namely, function symbols inΣ =
⋃

n>0 Σn denote
singleton sorts (i.e., they are mutually incomparable except that∀f ∈ Σ,⊥ < f < ⊤), and numbers
as features. Thus, the termf(t1, . . . , tn) is theψ-termf(1 ⇒ t1, . . . , n ⇒ tn). The features here
are simplyargument positionsand are interpreted in theOSF formalism asprojection functions.
Additional axioms are needed to enforce arity constraints. Namely:

ARITY (⊤) = ∅ (19)

ARITY (⊥) = {i ∈ N
∗ | i ≤ max{n > 0 | Σn 6= ∅}} (20)

∀f ∈ Σn : ARITY (f) = {1, . . . , n} (21)

∀i ∈ F : DOM(i) =
⋃

i≤n

Σn (22)

∀i ∈ F ,∀f ∈ Σ : RANf (i) =

{

⊤ if f ∈ DOM(i),
⊥ otherwise.

(23)

Condition (19) states that⊤ has empty arity. This corresponds to the fact that logical variables
may appear only as term leaves. Condition (20) states that⊥ has the maximal arity of all symbols.
Condition (21) declares the arity for each function symbol. Condition (22) declares the domains
for each argument position—namely, the set of symbols that have at least that many arguments.
Condition (23) enforces the domains and ranges declared in the signaturefor function symbols
according to their arity constraints.

For sorted algebras, the sort signatureS may also contain non-minimal sorts above the singleton-
denoting function symbols ofΣ. Thus, multi- or order-sorted versions of free term algebraTΣ,V are
readily expressible in theOSF formalism by making Condition (23) involve non-singleton sorts
other than⊤ as the range of projection features. With these signature constraints, the“Partial Fea-
ture” rule of Figure 10 combined with the basicOSF rules of Figure 4 will make unification of
(rational) Herbrand terms behave as expected. Fornon-rationalterms, one must also perform an
“occurs-check”test in the“Variable Elimination” rule.

66



DATA MODELS AS CONSTRAINT SYSTEMS

3.3.2 RULES OVER OBJECTS

Rules over typed attributed objects with class inheritance such as typically used in popular object-
oriented programming languages such asJava, C#, or C/C++, fit perfectly theOSF formalism
with sort definitions such as used in (Aı̈t-Kaci and Nasr, 1986) where a basic integration ofLP with
feature-term inheritance is described. LogIn was, to our knowledge, the first proposal motivated by
using order-sorted feature term inheritance as constraints in logic programming. The motivation
behind its design was that when“types” (or “sorts”) form a lower semi-lattice (i.e., a partial order
with greatest lower bounds—GLB ’s), unification of labelled graphs modulo this order is the key
to achieving a better focus on relevant goals by pruning out relations by set-denoting constraints.
Indeed, LogIn is easily characterized as aCLP language based on theOSF constraint system.

Clearly, this paradigm is directly amenable for specifying rules overJava-style object-oriented
data models. Take for example the simple multiple-inheritance class-interface hierarchy of Fig-
ure 17. Each class interface name corresponds to a sort. The declarations of Figure 17 define the

interface AdultPerson {
Name id;
Date dob;
int age;
String ssn;

}
interface Employee extends AdultPerson {

Title position;
String institution;
Employee supervisor;
int salary;

}
interface MarriedPerson extends AdultPerson {

MarriedPerson spouse;
}
interface MarriedEmployee extends Employee, MarriedPerson {
}
interface RichEmployee extends Employee {
}

Figure 17:Example of aJava multiple-inheritance class-interface hierarchy

sort partial order given in Figure 18.
It is not difficult to see thatOSF term unification or entailment can thus accommodate rules

using unification or pattern-matching over such objects.
This approach, exemplified by LogIn (Aı̈t-Kaci and Nasr, 1986), has had several descendants,

most notably LIFE (Äıt-Kaci, 1993; Äıt-Kaci et al., 1994a), but it also inspired many natural-
language processing (NLP) formalisms based on pureOSF term constraints such as Nora (Fis-
cher, 1993), or augmented with relational dependencies such as STUF (Dörre and Seiffert, 1991),
itself fully expressed in the spirit of the Ḧohfeld-SmolkaCLP scheme. One may indeed see the
LogIn family of languages (which includes LIFE) asCLP(O) languages. Strictly speaking, the

67



HASSAN A ÏT-KACI

AdultPerson

Employee MarriedPerson

RichEmployee MarriedEmployee

Figure 18:Partial sort order for the Java hierarchy of Figure 17

LogIn language as described in (Aı̈t-Kaci and Nasr, 1986) only includes the rules of Figures 4
and 7, as well as the rules for sort definitions described in (Aı̈t-Kaci et al., 1997), although with-
out variables in sort definitions—which makesOSF unification modulo sort definitions decidable.
LIFE (Aı̈t-Kaci, 1993) extends LogIn with interpreted functions overOSF terms, as well as with
sort definitions with variables and relational conditions—See Section 3.3.4.

Clearly, non-logical rules systems such as those based on condition/actionproduction rules
typically used in experts systems using object pattern-matching (as opposedto unification) can also
be expressed usingOSFconstraint entailment (as opposed to constraint conjunction).

3.3.3 HORN RULES OVER DESCRIPTION LOGIC CONCEPTS

Definite clauses over constraint systems implementing the semantics of any dialect in the family
DL languages have been proposed. Examples of such systems are CARIN (Levy and Rousset,
1998), andAL-log (Donini et al., 1998). Both are logic-programming languages that exploit the
description logicALCNR (Bucheit et al., 1993; Donini et al., 1996). CARIN is less restrictive
thanAL-log. In fact, both works fit fully the approach we preconize here (indeed, CARIN ∈
CLP(C)). However, although they present an interesting marriage ofDL with definite clauses,
neither make explicit the link with theCLP scheme nor, therefore, do they stress the free model-
theoretic semantics thereby inherited.

More seriously, CARIN’s designers seem to have an incorrect understanding of theOSF for-
malism and how it relates toDLs. In particular, in (Levy and Rousset, 1996), one can read:

“ψ-terms [. . . ] differ from description logics in several significant ways. [. . . ] they are more
limited [. . . ] since they can only allow functional roles [. .. ] For example, number restrictions
and existential statements that are standard in description logics are not expressible inψ-terms.”

However, these (unsubstantiated) statements are patently incorrect on allcounts as clearly shown in
Section 4.2.

3.3.4 ORDERED SORTS AS PROOF MEMOIZING

The basicOSF-unification rules of Figure 4 may be viewed as proof rules for proving monadic
predicates (i.e., X : s is consistent iffs(X) is true), functional dependencies (i.e., X.f

.
= Y is

68



DATA MODELS AS CONSTRAINT SYSTEMS

consistent iffY = f(X)), and equality (i.e., X
.
= Y is consistent iffX = Y ). It may thus be

argued that any logic reasoner may do the job of providing a satisfactory operational semantics to
such constraints. This is not so, however, sinceOSF-unification proves sort constraints by reducing
them monotonically w.r.t. the sort ordering. This means that whenX : s has been proven, the proof
of s(X) is recorded asthe sorts itself!. Indeed, if further down a proof, it is again needed to prove
X : s, the process simply remembers it simply by looking atX ’s binding. This, however, would
not be the case in a basic relational setting such as Prolog where having proven goals(X) is not
remembered in any manner.

Note that a subtle but wonderful consequence of this proof memoizing power ofOSF-style
unification arises when relational rules are also used in the body of sort definition. Indeed, clearly
the integration Rules/Ontology may be used as well symmetrically as Ontology/Rules. In other
words, while ontological constraints may be used for inference and computation by rules, rules may
in turn be used to enhance the expressive power of ontologies by allowingrelational conditions to
sort definitions as done in LIFE (Aı̈t-Kaci, 1993).

Let us briefly illutrate on an example how this works, and why this is invaluable.Let us consider
again the sort hierarchy of Figure 18. LIFE also uses interpreted functions (Äıt-Kaci et al., 1994a;
Aı̈t-Kaci and Podelski, 1994). For example, we assume here that the function ageInYears in
Figure 19 is a function that takes anAdultPerson object and returns its age in number of years
from itsdob feature and the current date—i.e., it is of typeAdultPerson 7→ int and could be
defined as,e.g., ageInYears(A : AdultPerson) → currentYear − A.dob.year. This
sort hierarchy defines recursive sorts and attaches relational conditions to each. The inheritance
scheme means that a sort’s features, equations thereof, as well as relational constraints are passed
down to subsorts. If we label every sort definition’s conditions with the maximal sort they restrict by
using a notation such assort#(condition), then it is a simple matter to implement relational-
proof memoizing as follows. In LIFE, equations involving interpreted functions, such as+, ∗, ≤,
≥, that miss some information are suspended until such information materializes—i.e., incomplete
function callsresiduate. In particular, the feature-projection function ‘.’ applied to a non-feature
expression residuates on its second argument (e.g., Y in the constraintX.Y = Z, whereX, X,
andZ are variables). That is, it waits until its second argument evaluates to a constant that denotes
a feature name. For example, the constraintX.Y = Z will wait for the feature argument until
Y gets bound to, say,foo, at which point the constraint is “awakened” andX gets then bound
to ⊤(foo ⇒ Z). Obviously, this works also when projecting on any functional expression that
eventually evaluates to a feature name.

Let’s say that we prove the following sequence ofOSF constraints:

1. X : adultPerson(age ⇒ 25),

2. X : employee,

3. X : marriedPerson(spouse ⇒ Y ).

First, we proveX : adultPerson and establish the conditionadultPerson#(X.age ≥ 18).
Note that, if this succeeds,X gets bound to a term with root sortadultPerson where all
the features leading to a variable in the constraint are materialized. As we proceed to proving
X : employee, since we have already proven that theage was correct, there is no need to
do so again. This is achieved by proving only the conditions imposed onemployee that are
tagged by a subsort ofemployee; namely,employee#(higherRank(E.position, P )) and

69



HASSAN A ÏT-KACI

:: P : adultPerson ( id ⇒ name
, dob ⇒ date
, age ⇒ A : int
, ssn ⇒ string
)

| A = ageInYears(P ), A ≥ 18.

employee <: adultPerson.
:: employee ( position ⇒ T : title

, institution ⇒ string
, supervisor ⇒ E : employee
, salary ⇒ S : int
)

| higherRank(E.position, T ) , E.salary ≥ S.

marriedPerson <: adultPerson.
:: M : marriedPerson ( spouse ⇒ P : marriedPerson )
| P.spouse = M.

marriedEmployee <: employee.
marriedEmployee <: marriedPerson.

richEmployee <: employee.
:: R : richEmployee ( institution ⇒ I

, salary ⇒ S
)

| stockValue(I) = V , hasShares(R, I,N) , S +N ∗ V ≥ 200000.

Figure 19:A relationally constrained LIFE sort hierarchy for the classes in Figure 17

70



DATA MODELS AS CONSTRAINT SYSTEMS

employee#(E.salary ≥ S). Next, we proceed to provingX : marriedPerson(spouse ⇒
Y ). However, we already provedX : employee. Thus, by sort intersection, we must prove
X : marriedEmployee(spouse ⇒ Y ). Hence, onlymarriedPerson#(Y.spouse = X)
needs to be established. All other inherited conditions having a sort label greater thanmarried-
Employee—such asemployee—can therefore be safely ignored.

Clearly, this method allowsnever to prove more than once any relational conditionrestricting
a sort definition. This property seems to have been overlooked by many researchers who consider
that theOSF formalism is, like theDL formalism, just a peculiar notational variant of a subset of
FOL.

4. Relation betweenOSF andDL formalisms

Description Logic (DL) and Order-Sorted Feature (OSF) logic are two mathematical formalisms
that possess proof-theories based on a constraint formalism. Both are direct descendants of Ron
Brachman’s original ideas (Brachman, 1977). This inheritance goes through my own early work
formalizing Brachman’s ideas (Aı̈t-Kaci, 1984), which in turn inspired the work of Gert Smolka,
who pioneered the use of constraintsboth for theDL (Schmidt-Schauß and Smolka, 1991)and
OSF (Smolka, 1988) formalisms. While theDL approach has become the mainstream of research
on the semantic web, the lesser knownOSF formalisms have evolved out of Unification Theory
(Schmidt-Schauß and Siekmann, 1988), and been used in constraint logicprogramming and com-
putational linguistics (D̈orre and Rounds, 1990; Emele and Zajac, 1990; Dörre and Seiffert, 1991;
Emele, June 1991; Zajac, 1991; Emele and Zajac, 1992; Smolka, 1992; Zajac, 1992; Carpenter,
1992; Äıt-Kaci, 1993; Fischer, 1993; Äıt-Kaci and Podelski, 1993; Äıt-Kaci et al., 1994a; Smolka
and Treinen, 1994; Treinen, 1997; Müller et al., 2000, 2001).

Both formalisms were introduced for describing attributed typed objects. Thus,OSF andDL
have several common, as well as distinguishing, aspects. Thanks to both formalisms using the
common language ofFOL for expressing semantics, they may thus be easily compared—see, for
example, (Nebel and Smolka, 1990, 1991). We here brush on some essential points of comparison
and contrast.

4.1 Common aspects

DL reasoning is generally carried out using (variations on) Deductive Tableau methods (Manna
and Waldinger, 1991). This is also the case of the constraint propagationrules of Figure 16, which
simply mimick a Deductive Tableau decision procedure (Donini et al., 1996).OSF reasoning is
done by theOSF-constraint normalization rules of Figures 4 and 10, which implement a logic of
sorted-feature equality.

§Object descriptions –Both theDL andOSF formalisms describe typed attributed objects. In
each, objects are data structures described by combining set-denoting concepts and relation-denoting
roles.

§Logic-based semantics –BothDL andOSF logic are syntatic formalisms expressing meaning
using conventional logic styles. In other words, both formalisms take their meaning in a common
universal language—viz., (elementary) Set Theory. This is good since it eases understanding each
formalism in relation to the other thanks to their denotations in the common language.

71



HASSAN A ÏT-KACI

§Proof-theoretic semantics –Both DL andOSF logics have their corresponding proof theory.
Indeed, since both formalisms are syntactic variants of fragments ofFOL, proving theorems in
each can always rely onFOLmechanized theorem proving.
§Constraint-based formalisms –Even further, bothDL andOSF logic are operationalized using a
constraint-based decision procedure. As we have expounded, this makes both paradigms amenable
to being manipulated by rule-based systems such as based onCLP, rewrite rules, or production
rules.
§Concept definitions –BothDL andOSF provide a means for defining concepts in terms of other
concepts. This enables a rich framework for expressing recursive data structures.

4.2 Distinguishing aspects

There are also aspects in each that distinguish theDL andOSF formalisms apart. However, sev-
eral of these distinguishing features are in fact cosmetic—i.e., are simply equivalent notation for
the same meaning. Remaining non-cosmetic differences are related to the nature of the deductive
processes enabled out by each formalism.
§Functional featuresvs.relational roles –TheOSF formalism usesfunctionsto denote attributes
while theDL formalism usesbinary relationsfor the same purpose. Many have argued that this
difference is fundamental and restricts the expressivity ofOSF vs.DL. This, however, is only a
cosmetic difference as we have already explained. First of all, a functionf : A 7→ B is a binary
relation sincef ∈ A × B. It a functional relation because it obeys the axiom of functionality;
namely,

〈a, b〉 ∈ f & 〈a, b′〉 ∈ f ⇒ b = b′. (24)

In other words, a function is a binary relation that associates at most one range element to any
domain element. This axiom is fundamental as it is is used in basicOSF unification “Feature
Functionality” shown in Figure 4. Indeed, the correctness of this rule relies on the semantics of
features as functions, not as relations.

However, a relationR ∈ A×B is equivalent to either of a pair of set-denoting functions—viz..,
either the functionR[ ] : A 7→ 2

B, returning theR-object(orR-image) setR[x] ⊆ B of an element
x ∈ A; or, dually, the functionR−1[ ] : B 7→ 2

A, returning theR-subject(or R-antecedent) set
R−1[y] ⊆ A of an elementy ∈ B—see Equations (17). Indeed, the following statements (1)–(3)
are equivalent:

∀〈x, y〉 ∈ A×B, (1) 〈x, y〉 ∈ R iff (2) y ∈ R[x] iff (3) x ∈ R−1[y].

Therefore, it is a simple matter for theOSF formalism to express relational attributes (or roles)
with features taking values as sets. This is trivially done as a special case of the “Value Aggrega-
tion” OSF unification rule shown in Figure 10, using a set data constructor—i.e., a commutative
idempotent monoid.
§Setsvs. individuals – Because theOSF formalism has only set-denoting sorts, it is often mis-
construed as unable to deal with individual elements of these sets. However, as explained in Sec-
tion 3.1.6, this is again an innocuous cosmetic difference since elements are simply assimilated to
singleton-denoting sorts.
§No number restrictions vs.Number restrictions – Strictly speaking, theOSF formalism has no
special constructs for number restrictions as they exist inDL. Now, this does not mean that it lacks

72



DATA MODELS AS CONSTRAINT SYSTEMS

the power to enforce such constraints. Before we show how this may be done, however, it important
to realize that it may not always be a good idea to use theDL approach to do so.

Indeed, as can be seen in Figure 16, the“Min Cardinality” rule (C≤) will introducen(n− 1)/2
new disequality constraints for each such constraint of cardinalityn. Clearly, this is a source of gross
inefficiency an increases. Similarly, the“Existential Role” rule (C∃) will systematically introduce
a new variable for a role,even when this role is never accessed!It does so because, it materializes
the full extent of role value sets. In other words,C constraint-propagation rules flesh out complete
skeletons for attributed data structures whether or not the actual attribute values are needed.

By contrast, it is simple and efficient to accommodate cardinality constraints in theOSF cal-
culus with value aggregation using a set constructor (i.e., an idempotent commutative monoidM =
〈⋆,1⋆〉), and a functionCARD : M 7→ N that returns the number of elements in a set. Then, impos-
ing a role cardinality constraint for a roler in a feature termt = X : s(r ⇒ S = {e1, . . . , en} : m),
where sortm denotesM ’s domain, is achieved by the constraintϕ(t) & CARD(S) ≤ n—or
ϕ(t) & CARD(S) ≥ n. If the set contains variables, these constraints will residuate as needed
pending the complete evaluation of the functionCARD. However, as soon as enough non-variable
elements have materialized in the set that enable the decision, the constraint willbe duly enforced.
Clearly, this “lazy” approach saves the time and space wasted byDL-propagation rules, while fully
enforcing the needed cardinalities.

Incidentally, note also that this principle allows not only min and max cardinality, but any con-
straints on a set, whether cardinality or otherwise. Importantly, this foregoing method works not
only for sets, but can be used with arbitrary aggregations using other monoids.
§Greatest fix point vs. least fix point – It is well known that unfolding recursive definitions of
all kinds (be it function, relation, or sort) is precisely formalized as computing a fix point in some
information-theoretic lattice. Recall that a function between two ordered setsf : A,≤7→ A′,≤′ is
monotone iff and only if∀x, y ∈ A, x ≤ y ⇒ f(x) ≤′ f(y). Recall also that, given a complete
lattice L

DEF
== 〈DL, ⊑ L,⊓L,⊔L,⊤L,⊥L〉 and a monotone functionF : DL 7→ DL, Tarski’s

fix-point theorem states that the setFP(F)
DEF
== {x ∈ DL | F(x) = x} of fix points ofF is itself a

complete sublattice ofL (Birkhoff, 1979). Moreover, its bottom element is calledF ’s least fix point
(LFP), writtenF↑, defined by Equation (25):

F↑ DEF
==

⊔

n∈N

L

Fn(⊥L) (25)

and its top element is calledF ’s greatest fix point(GFP), writtenF↓, defined by Equation (26):

F↓ DEF
==

l

n∈N

L

Fn(⊤L) (26)

where:

Fn(x) =

{

x if n = 0,
F(Fn−1(x)) otherwise.

Informally, F↑ is theupward iterative limit ofF starting from the least element inDL, whileF↓

is its downwarditerative limit starting from the greatest element inDL. One can easily show that
F(F↑) = F↑ [resp.,F(F↓) = F↓], and that no element ofDL lesser thanF↑ [resp., greater than
F↓ ] is a fix point ofF .

73



HASSAN A ÏT-KACI

One may wonder when one, or the other, kind of fix point captures the semantics intended for
a set of recursive definitions. Intuitively, LFP semantics is appropriate when inference proceeds
by derivingnecessary consequencesfrom facts that hold true, and GFP semantics is appropriate
when inference proceeds by derivingsufficient conditionsfor facts to hold true. One might also say
that LFP isdeductivesince it moves from premiss to consequent, and that GFP isabductivesince
it moves from consequent to premiss. Therefore, LFP computation can model only well-founded
(i.e., terminating) recursion, while GFP computation can also model non well-founded (i.e., not
necessarily terminating) recursion. Hence, typically, LFP computation is naturally described as a
bottom-upprocess, while GFP computation is naturally described as atop-downprocess.

An example of LFP semantics is given by the semantics ofCLP relations defined in Equations 2,
while an example of GFP semantics is given by the non-deterministicCLP resolution process de-
scribed in Equations 3–5. Indeed, the former proceeds bottom-up, while the latter goes top-down.
Note that, in this case, the two fix points coincide. Such is not necessarily the case in general.

Another example of GFP semantics is given by the unification algorithm of Figure 2. In-
deed, unification transforms a set of equations into an equivalent one using sufficient conditions
by processing the terms top-down from roots to leaves. The problem posed is to find sufficient
conditions for a term equation to hold on the constituents (i.e., the subterms) of both sides of the
equation. For first-order terms, this process converges to either failureor producing a most general
sufficient condition in the form of a variable substitution, or equation set in solved form (the MGU).
Similarly, theOSF-constraint normalization rules of Figures 4, 7, 9, and 10 also form an example
of converging GFP computation for the same reasons. Yet another exampleof GFP computation
where the process may diverge is the lazy recursive sort definition unfolding described in (Äıt-Kaci
et al., 1997).

On the other hand, constraint-propagation rules based on Deductive Tableau methods such as
used in (Schmidt-Schauß and Smolka, 1991) or shown in Figure 16 are LFPcomputations. In-
deed, they proceed bottom-up by building larger and larger constraint sets by completing them
with additional (and often redundant) constraints. In short,OSF-constraint normalization follows
a reductive semantics (it eliminates constraints) whileDL-constraint propagation follows an infla-
tionary semantics (it introduces constraints). As a result,DL’s tableau-style reasoning method is
expansive—therefore, expensive in time and space. One can easily see this simply by realizing that
each rule in Figure 16 builds a larger setS as it keeps adding more constraints and more variables
to S. Only the“Max Cardinality” rule (C≤) may reduce the size ofS to enforce upper limits on
a concept’s extent’s size by merging two variables. Finally, it requires thatthe constraint-solving
process be decidable.

By contrast, theOSF labelled-graph unification-style reasoning method is more efficient both
in time and space. Moreover, it can accommodate semi-decidable—i.e., undecidable, though recur-
sively enumerable—constraint-solving. Indeed, no rule in Figures 4, 7,9, and 10 ever introduces
a new variable. Moreover, all the rules in Figure 4 as well as the rule 10, except for the“Partial
Feature” rule, all eliminate constraints. Even this latter rule introduces no more constraints than
the number of features in the whole constraint. The rules in Figures 7 and 9 may replace some
constraints with more constraints, but the introduced constraints are all morerestrictive than those
eliminated.
§Coinduction vs. induction – Remarkably, the interesting duality between least and greatest fix-
point computations is in fact equivalent to another fundamental one; namely, induction vs. coinduc-
tion in computation and logic, as nicely explained in (Sangiorgi, 2004). Indeed,while induction

74



DATA MODELS AS CONSTRAINT SYSTEMS

allows to derive a whole entity from its constituents, coinduction allows to derive the constituents
from the whole. Thus, least fix-point computation is induction, while greatest fix-point computation
is coinduction. Indeed, coinduction is invaluable for reasoning about non well-founded compu-
tations such as those carried out on potentially infinite data structures (Aczel, 1988), or (possibly
infinite) process bisimulation (Baeten and Weijland, 1990).

This is a fundamental difference betweenDL andOSF formalisms:DL reasoning proceeds
by actually building a model’s domain verifying a TBox, whileOSF reasoning proceeds by elim-
inating impossible values from the domains. Interestingly, this was already surmised in (Schmidt-
Schauß and Smolka, 1991) where the authors state:

“[. . . ] approaches using feature terms as constraints [. . . ]use a lazy classification and can
thus tolerate undecidable subproblems by postponing the decision until further information is
available. [. . . these] approaches are restricted to feature terms; however, an extension to KL-
ONE-like concept terms appears possible.”

Indeed, the extendedOSF formalism we have overviewed in this article is a means to achieve
precisely this.

5. Conclusion

We have shown how constraint logic programming offers an invaluable abstraction mechanism for
“integrating” correctly, seamlessly, and—to boot!—operationally, rule-based programming (e.g.,
definite-clause logic programming) with data description logics. Seen as a formal constraint system,
the data model is thus abstracted from the rule model. In order to demonstrate how theCLP scheme
hinges on the fact that the rule dimension and the data model dimension areorthogonal, we have
illustrated this paradigm by formulating fourLP languages, namely Datalog, Prolog, LIFE, and
CARIN, as members of theCLP language familyCLP(A), whereA = D,H,O, C. Indeed,
one may conjugate any formal rule-based system (i.e., not only Horn-based) with any data model
as long as the latter may be expressed using constraints. This independence property leads to a
clear separation of concerns and great benefits either regarding correctness (due to clean formal
semantics ofconstraint entailment as pattern matchingandconstraint conjunction as unification),
or implementation (due to efficient dedicated constraint-solving algorithms). Wehave also reviewed
two well-known data description formalisms based on constraints, Order-Sorted Feature Logic and
Description Logic, explicating how they work and how they are formally related.

Clearly, constraints are the right medium for expressing symbolic or numericdata, or mixtures
of both. For example, as shown by the pioneering work of the late Paris Kanellakis onConstraint
Databases, one may use relational rules acting on non-symbolic, or hybrid, data as in Geographical
Information System (GIS) where cartographic data may be described bygeometric constraintsin
the form, e.g., of linear inequalities delineating map areas as convex polygons (Kanellakisand
Goldin, 1994; Brodsky, 1996), for which Mathematical Programming techniques used in Operations
Research may be used. In addition, the algebraic properties of constraint are appropriate for making
different constraint systems cooperate by helping one another when each in isolation may not have
enough information to proceed to a solution (Aı̈t-Kaci et al., 2007, 2006).

Easing rule interoperability is yet another substantial benefit of the “data as constraint” ap-
proach. Indeed, constraints are the right level of abstraction for ruleinterchange because they allow
approximation. Approximation is important for exchange as one may still wish to exchange rules
at some level ofabstraction. If data is assimilated to constraints then abstraction is possible simply

75



HASSAN A ÏT-KACI

by relaxing some constraints describing the data over which the rules are defined. This is precisely
the method used in (Äıt-Kaci et al., 2007, 2006) for the verification of production rules by abstract
interpretation over constraints.

Finally, the most obvious benefit of seeing data description as constraints isthat it simplifies
things at both the theoretical and practical level. It is a rare happening in information science
that such be the case for it not to be of some welcome convenience. The most immediate is the
perspicuous expression of rule-based computation and inference over various data models. For this
reason, it may be of importance for facilitating some of the advertized objectives of the semantic-
web effort.

We hope that this article will spur the reader’s interest in pursuing some of the ideas we have
discussed.

Acknowledgments

The author wishes to express his gratitude both to Andreas Podelski and Gert Smolka for many
enlightening discussions over the years on several issues touched upon in this work. In adddition,
Gert is specially thanked for providing copies of no longer available papers during the preparation of
this article. I also thank Jean-Louis Ardoint and Bruno Berstel for kindlyproofreading earlier drafts,
catching umpteen typos, glitches, and various other inanities. Thanks also toLucas Bordeaux, Barry
O’Sullivan, and Pascal Van Hentenryck, the organizers of CP 2006 and editors of this special issue
of CPL for inviting this communication. Finally, and perhaps most importantly, I amindebted to
Ron Brachman for getting me interested in his fascinating ideas and nice diagrams at a time when
he called them “SI-Nets” (Brachman, 1977).

76



DATA MODELS AS CONSTRAINT SYSTEMS

Appendix

Appendix A. Herbrand terms and substitutions

Let {Σn}n≥0 be an indexed family of mutually disjoint sets of (function) symbols of arityn. Let
Σ =

⋃

n≥0 Σn be the set of all function symbols.If we assumeΣ0 6= ∅ ground Herbrand terms will
befinite trees—i.e., wherein all path are finite and lead from the root to the leaves. These structures
are calledinductive as they embody computation from the leaves to the root. On the other hand,
rational terms(or regular graphs) do not have these restrictions: paths in a rational term may be of
infinite length, although the number of its subterms is itself finite. Prolog III’s rational terms are an
example Colmerauer (1990). Other examples arecoinductivestructures used in so-called non-strict
programming languages—e.g., lazy lists and trees.

Let TΣ be the set ofground termsdefined as the smallest set such that:

• if a ∈ Σ0 thena ∈ TΣ;

• if f ∈ Σn andti ∈ TΣ, (1 ≤ i ≤ n), thenf(t1, . . . , tn) ∈ TΣ.

LetV be a countably infinite set ofvariables. By convention, variables will be capitalized not to
confuse them with constants inΣ0.

The set offirst-order (Herbrand) termsis writtenTΣ,V and is defined as the smallest set such
that:

• if X ∈ V thenX ∈ TΣ,V ;

• if a ∈ Σ0 thena ∈ TΣ,V ;

• if f ∈ Σn andti ∈ TΣ,V , (1 ≤ i ≤ n), thenf(t1, . . . , tn) ∈ TΣ,V .

We shall write simplyT instead ofTΣ,V omitting the symbol signature and set of variables when
implicit.

For example, given the signatureΣ such thatp ∈ Σ3, h ∈ Σ2, f ∈ Σ1, anda ∈ Σ0, and given
thatW ,X, Y , andZ are variables inV, the termsp(Z, h(Z,W ), f(W )) andp(f(X), h(Y, f(a)), Y )
are inT .

A substitutionis a finitely non-identical assignment of terms to variables;i.e., a functionσ from
V to T such that the set{X ∈ V | X 6= σ(X)} is finite. This set is called thedomainof σ and
denoted byDOM(σ). Such a substitution is also written as a set such asσ = {ti/Xi}

n
i=1 where

DOM(σ) = {Xi}ni=1 andσ(Xi) = ti for i = 1 to n.
A substitutionσ is uniquely extended to a functionσ from T to T as follows:

• σ(X) = σ(X), if X ∈ V;

• σ(a) = a, if a ∈ Σ0;

• σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)), if f ∈ Σn, ti ∈ T , (1 ≤ i ≤ n).

Since they coincide onV, and for notation convenience, we deliberately confuse a substitutionσ
and its extensionσ. Also, rather than writingσ(t), we shall writetσ. Given two substitutions
σ = {ti/Xi}

n
i=1 andθ = {sj/Yj}

m
j=1, their compositionσθ is the substitution which yields the

same result on all terms as first applyingσ then applyingθ on the result. One computes such a
composition as the set:

σθ =
(

{tθ/X | t/X ∈ σ} − {X/X | X ∈ DOM(σ)}
)

∪
(

θ − {s/Y | Y ∈ DOM(σ)}
)

.

77



HASSAN A ÏT-KACI

For example, ifσ = {f(Y )/X,U/V } andθ = {b/X, f(a)/Y, V/U}, then composingσ andθ
yieldsσθ = {f(f(a))/X, f(a)/Y, V/U}; composingθ andσ givesθσ = {b/X, f(a)/Y, U/V }.

Substitution composition defines a preorder (i.e., a reflexive and transitive) relation on substitu-
tions. A substitutionσ is said to bemore generalthan a substitutionθ iff there exists a substitution
̺ such thatθ = σ̺. For example,{f(Y )/X} is more general than{f(f(a))/X, f(a)/Y }.

Appendix B. Monoidal algebra

We recall some simple, but often overlooked, facts linking monoidal operations to corresponding
order relations. These basic facts are important in that they allow viewing monoidal computation as
an approximation process based on the associated order.

A monoidal algebrais a structure〈D, ⋆〉 consisting of adomainD of elements—i.e., a set—
with an internal operation⋆ : D × D 7→ D. In any monoidal algebra, the operation⋆ has an
associatedprefix relation defined as:

∀x, y ∈ D, x ≺⋆ y iff ∃z ∈ D, x ⋆ z = y. (27)

§Semigroup – A semigroup〈D, ⋆〉 is a monoidal algebra with domainD whose operation⋆ is
associative; that is,

∀x, y, z ∈ D, x ⋆ (y ⋆ z) = (x ⋆ y) ⋆ z. (28)

Note that in a semigroup〈D, ⋆〉, the prefix relation≺⋆ is always transitive (by virtue of associativity
of ⋆). However, it is not necessarily reflexive.
§Monoid – A monoid 〈D, ⋆,1⋆〉 is a semigroup〈D, ⋆〉 with a special element1⋆ ∈ D, called the
(⋆-)identity—or unit—element, such that:

∀x ∈ D, x ⋆ 1⋆ = 1⋆ ⋆ x = x. (29)

Note that in a monoid〈D, ⋆,1⋆〉, the prefix relation≺⋆ is also reflexive (by virtue of the unit
element). Therefore, it is a preorder, and is sometimes called the monoid’sprefix approximation.
For example, first-order terms substitutions form such a monoid. The prefixrelation for substitution
composition is precisely the usual “more general than” quasi-ordering. It is a preorder only because
it is not anti-symmetric—i.e., in this case≺⋆ ∩ ≻⋆ is equality up to variable renaming.
§Commutative structure – A commutativestructure is any of the foregoing structures whose op-
eration⋆ also obeys thecommutativityaxiom:

∀x, y ∈ D, x ⋆ y = y ⋆ x. (30)

§Semilattice –A semilattice〈D, ⋆〉 is a commutative semigroup such that⋆ is idempotent; i.e.:

∀x ∈ D, x ⋆ x = x. (31)

Another natural relation may be defined in terms of the⋆ operation in an idempotent monoidal
structure. It is the relation≤⋆ onD defined as:

∀x, y ∈ D, x ≤⋆ y iff x ⋆ y = y. (32)

78



DATA MODELS AS CONSTRAINT SYSTEMS

The relation≤⋆ is called thesemilattice orderingand indeed defines a partial order onD. Namely,
≤⋆ is reflexive (by idempotence of⋆), anti-symmetric (by commutativity of⋆) and transitive (by
associativity of⋆).

In a semilattice, the prefix relation≺⋆ is also an ordering and furthermore it coincides with the
semilattice ordering; that is,∀x, y, x ≺⋆ y iff x ≤⋆ y.
Proof Assume thatx ≤⋆ y. By definition, this means thatx ⋆ y = y. Thus, it is clear that
∃z, x ⋆ z = y (takingz = y). Therefore,x ≺⋆ y. Now assume thatx ≺⋆ y. Then, by definition,
x ⋆ zxy = y for somezxy ∈ D. Hence,

x ⋆ y = x ⋆ (x ⋆ zxy) (replacingy by its value)
= (x ⋆ x) ⋆ zxy (associativity)
= x ⋆ zxy (idempotence)
= y

and so,x ≤⋆ y.

Note that,⋆ is automatically asupremumoperation for its semilattice ordering; namely, for all
x, y, z ∈ D:

if y ≤⋆ x and z ≤⋆ x then y ⋆ z ≤⋆ x. (33)

Proof Assume thaty ≤⋆ x andz ≤⋆ x; then,

y ⋆ x = x [by (32)] (a)
z ⋆ x = x [by (32)] (b)

(y ⋆ x) ⋆ (z ⋆ x) = x ⋆ x [by (a) and (b)]
(y ⋆ x) ⋆ (z ⋆ x) = x [by (31)]
(y ⋆ z) ⋆ (x ⋆ x) = x [by (28) and (30)]

(y ⋆ z) ⋆ x = x [by (31)]
y ⋆ z ≤⋆ x [by (32)].

Finally, note that if a semilattice〈D, ⋆〉 is also a monoid〈D, ⋆,1⋆〉, Equation (32) entails that1⋆ is
the (necessarily unique)leastelement ofD for ≤⋆. Then, it is sometimes written as⊥ (and called
bottom). Thus, a semilattice with bottom can also be described as an idempotent commutative
monoid.

The following table gives examples of common monoidal algebras.

Domain ⋆ 1⋆ ≺⋆ Algebra
Σ∗ · ǫ ≺ free monoid
R + 0 ≤ commutative monoid
N ∗ 1 divides commutative monoid
2

S ∪ ∅ ⊆ semilattice
2

S ∩ S ⊇ semilattice

In this table,Σ is a finite alphabet, andΣ∗ is the set of all finite strings of symbols inΣ, including
the empty stringǫ. The operation ‘·’ is string concatenation.N is the set of natural numbers.R is
the set of real numbers. The setS is any non empty set.

79



HASSAN A ÏT-KACI

Appendix C. Strong Extensionality

Basically, the reason why the“Weak Extensionality”rule of Figure 10 fails for cyclic terms is that
it works inductively, starting from terms’ leaves to their roots.

Consider, for example, an extensional sorts ∈ E such thatARITY (s) = {f}, and the terms:

X : s(f ⇒ X) & X ′ : s(f ⇒ X ′) (34)

or, even better, the terms:
X : s(f ⇒ X ′) & X ′ : s(f ⇒ X). (35)

Now, ARITY (s) = {f} means that“s denotes a singleton sort whenever itsf feature denotes one
as well.” Semantically, in both examples, variablesX andX ′ denote therefore the same element
(due toall the features inARITY (s) being consistently sorted as singletons). However, the “weak
extensionality” rule will not transform either the terms in Examples 34 or 35 into one whereX and
X ′ are equal as they should be as per the semantics of arity and extensionality.

Clearly, this inductive manner of proceeding cannot work for cyclic extensional terms such as
Examples 34 or 35. As was seen in Section 4.2, we may thus proceedcoinductively from roots
to leaves keeping a record of which extensional sorts appear with which variables. This is done
by carrying acontext Γ, a set of elements of the forms : {X1, . . . , Xn}, whereXi ∈ V, for
i = 1, . . . , n, (n ≥ 0), wheres ∈ E is extensional, and such that each suchs occurs at mostoncein
any such contextΓ. A contexted ruleis one of the form:

(An) RULE NAME :h
Condition

i Prior Context ⊢ Prior Form

Posterior Context ⊢ Posterior Form

Appropriate extensional sort occurrences record-keeping is thus achieved using contexted Rule
Extensional Variablein Figure 20. The “real” work is then done by contexted Rule“Strong Exten-
sionality” in Figure 20. Using these two rules on weak normal forms will work as expected;viz., it
will merge any remaining potential cyclic extensional elements that denote the same individual.

(O14) EXTENSIONAL VARIABLE :�
if s ∈ E and X 6∈ V and ∀f ∈ ARITY (s) :
{X.f

.
= X ′, X ′ : s′} ⊆ φ with s′ ∈ E

� Γ ⊎ {s : V, . . . , } ⊢ φ & X : s

Γ ⊎ {s : V ∪ {X}, . . .} ⊢ φ & X : s

(O15) STRONG EXTENSIONALITY :�
if s ∈ E

� Γ ⊎ {s : {X,X ′, . . .} ⊢ φ

Γ ⊎ {s : {X, . . .} ⊢ φ & X
.
= X ′

Figure 20:OSF-constraint strong extensionality normalization rules

80



DATA MODELS AS CONSTRAINT SYSTEMS

References

Peter Aczel.Non Well-Founded Sets. Center for the Study of Language and Information, Stanford,
CA, USA, 1988.[Available online4].

Hassan Äıt-Kaci. A Lattice-Theoretic Approach to Computation Based on a Calculus of Partially-
Ordered Types. PhD thesis, University of Pennsylvania, Philadelphia, PA, 1984.

Hassan Äıt-Kaci. An algebraic-semantics approach to the effective resolution of type equations.
Theoretical Computer Science, 45:293–351, 1986.

Hassan Äıt-Kaci. An introduction to LIFE—Programming with Logic, Inheritance, Functions, and
Equations. In Dale Miller, editor,Proceedings of the International Symposium on Logic Pro-
gramming, pages 52–68. MIT Press, October 1993.[Available online5].

Hassan Äıt-Kaci. “Go (Semantic) Web, young (CP) wo/man!”. Panel presentation atthe CP 2006
Workshop on the“Next 10 Years of Constraint Programming,”organized by Lucas Bordeaux,
Barry O’Sullivan, and Pascal Van Hentenryck, Nantes, France, September 2006.

Hassan Äıt-Kaci, Bruno Berstel, Ulrich Junker, Michel Leconte, and Andreas Podelski. Satisfiabil-
ity modulo structures as constraint satisfaction. Research paper, submittedfor publication, ILOG,
Inc., December 2006.

Hassan Äıt-Kaci, Bruno Berstel, Ulrich Junker, Michel Leconte, and Andreas Podelski. Satisfia-
bility modulo structures as constraint satisfaction: An introduction. In Pierre-Etienne Moreau,
editor, Actes des Jourńees Francophones des Langages Applicatifs, pages 1–8, Aix les Bains,
France, January 2007. Insititut National de Recherche en Informatique et Automatique, INRIA.
[Available online6].

Hassan Äıt-Kaci, Robert Boyer, Patrick Lincoln, and Roger Nasr. Efficient implementation of
lattice operations.ACM Transactions on Programming Languages and Systems, 11(1):115–146,
January 1989.

Hassan Äıt-Kaci, Bruno Dumant, Richard Meyer, Andreas Podelski, and Peter VanRoy. The Wild
LIFE handbook.[Available online7], 1994a.

Hassan Äıt-Kaci and Roger Nasr. LOGIN: A logic programming language with built-in inheritance.
Journal of Logic Programming, 3:185–215, 1986.

Hassan Äıt-Kaci and Roger Nasr. Integrating logic and functional programming.Lisp and Symbolic
Computation, 2:51–89, 1989.

Hassan Äıt-Kaci, Roger Nasr, and Patrick Lincoln. Le Fun: Logic, equations, andFunctions.
In Proceedings of the Symposium on Logic Programming (San Francisco, CA), pages 17–23,
Washington, DC, 1987. IEEE, Computer Society Press.

4.http://standish.stanford.edu/pdf/00000056.pdf
5.http://koala.ilog.fr/wiki/pub/Main/HassanAitKaci/ilps93.ps.gz
6.http://www.loria.fr/∼moreau/jfla2007/
7.http://citeseer.ist.psu.edu/134450.html

81



HASSAN A ÏT-KACI

Hassan Äıt-Kaci and Andreas Podelski. Towards a meaning of LIFE.Journal of Logic Program-
ming, 16(3-4):195–234, 1993.[Available online8].

Hassan Äıt-Kaci and Andreas Podelski. Functions as passive constraints in LIFE. ACM Transac-
tions on Programming Languages and Systems, 16(4):1279–1318, July 1994.[Available online9].

Hassan Äıt-Kaci, Andreas Podelski, and Seth C. Goldstein. Order-sorted featuretheory unification.
Journal of Logic Programming, 30(2):99–124, 1997.[Available online10].

Hassan Äıt-Kaci, Andreas Podelski, and Gert Smolka. A feature-based constraint system for
logic programming with entailment.Theoretical Computer Science, 122(1–2):263–283, Janu-
ary 1994b.[Available online11].

Franz Baader and Werner Nutt. Basic description logics. In Franz Baader, Diego Calvanese, Debo-
rah L. McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, editors,The Description Logic
Handbook: Theory, Implementation, and Applications, chapter 2, pages 47–100. Cambridge Uni-
versity Press, 2003.[Available online12].

Franz Baader and Ulrike Sattler. Description logics with aggregates and concrete domains. In
Proceedings of the International Workshop on Description Logics, Gif sur Yvette, France, 1997.
[Available online13].

J. C. M. Baeten and W. P. Weijland.Process Algebra, volume 18 ofCambridge Tracts in Theoretical
Computer Science. Cambridge University Press, Cambridge, UK, October 1990.

Jean-Pierre Ban̂atre and Daniel Le Ḿetayer. A new computational model and its discipline of
progrramming. INRIA Technical Report 566, Institut National de Recherche en Informatique et
Automatique, Le Chesnay, France, 1986.

Salima Benbernou and Mohand-Said Hacid. Resolution and constraint propagation for semantic
web services discovery.Journal of Distributed and Parallel Databases, 18(1):65–81, July 2005.

Gérard Berry and Ǵerard Boudol. The chemical abstract machine. InProceedings of the 17th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages—POPL’90, pages
81–94, New York, NY, USA, 1990. ACM Press.

Garrett Birkhoff. Lattice Theory, volume 25 ofColloquium Publications. American Mathematical
Society, Providence, RI, USA, 3rd edition, 1979.

Ronald Brachman.A Structural Paradigm for Representing Knowledge. PhD thesis, Harvard Uni-
versity, Cambridge, MA, USA, 1977.

Alexander Brodsky. Constraint databases: Promising technology or just intellectual exercise?ACM
Computing Surveys, 28(4):59, 1996.

8.http://www.hpl.hp.com/techreports/Compaq-DEC/PRL-RR-11.pdf
9.http://www.hpl.hp.com/techreports/Compaq-DEC/PRL-RR-13.pdf

10.http://www.hpl.hp.com/techreports/Compaq-DEC/PRL-RR-32.pdf
11.http://www.hpl.hp.com/techreports/Compaq-DEC/PRL-RR-20.pdf
12.http://citeseer.ist.psu.edu/baader03basic.html
13.http://citeseer.ist.psu.edu/article/baader98description.html

82



DATA MODELS AS CONSTRAINT SYSTEMS

Martin Bucheit, Francesco M. Donini, and Andrea Schaerf. Decidable reasoning in terminological
knowledge representation systems.Journal of Artificial Intelligence Research, 1:109–138, 1993.
[Available online14].

Bob Carpenter. Typed feature structures: A generalization of first-order terms. In Vijay Saraswat
and Kazunori Ueda, editors,Proceedings of the 1991 International Symposium on Logic Pro-
gramming, pages 187–201, Cambridge, MA, 1991. MIT Press.

Bob Carpenter.The Logic of Typed Feature Structures, volume 32 ofCambridge Tracts in Theoret-
ical Computer Science. Cambridge University Press, Cambridge, UK, 1992.

Alain Colmerauer. An introduction to Prolog III.Communication of the ACM, 33(7):69–90, 1990.

Isabel Cruz, Stefan Decker, Dean Allemang, Chris Preist, Daniel Schwabe, Peter Mika, Mike
Uschold, and Lora Aroyo, editors.The Semantic Web—ISWC 2006, number 4273 in Lecture
Notes in Computer Science, 2006. 5th International Semantic Web Conference, ISWC 2006,
Athens, GA, November 2006, Springer-Verlag.

Luı́s Damas, Nelma Moreira, and Giovanni B. Varile. The formal and computational theory of com-
plex constraint solution. In C. Rupp, M. A. Rosner, and R. L. Johnson, editors,Constraints, Lan-
guage, and Computation, Computation in Cognitive Science, pages 149–166. Academic Press,
London, 1994.

Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea Schaerf. Reasoning in de-
scription logics. In Gerhard Brewka, editor,Principles of Knowledge Representation, pages
191–236. CSLI Publications, Stanford, CA, 1996.[Available online15].

Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea Schaerf.AL-log: Integrating
datalog and description logics.Journal of Intelligent Information Systems, 10(3):227–252, 1998.
[Available online16].

Jochen D̈orre and William C. Rounds. On subsumption and semiunification in feature algebras. In
Proceedings of the 5th Annual IEEE Symposium on Logic in Computer Science (Philadelphia,
PA), pages 301–310, Washington, DC, 1990. IEEE, Computer Society Press.

Jochen D̈orre and Roland Seiffert. Sorted feature terms and relational dependencies. In Bernhard
Nebel, Kai von Luck, and Christof Peltason, editors,Proceedings of the International Workshop
on Terminological Logics, pages 109–116. DFKI, 1991.[Available online17].

Martin C. Emele. Unification with lazy non-redundant copying. InProceedings of the 29th annual
meeting of the ACL, Berkeley, California, June 1991. Association for Computational Linguistics.

Martin C. Emele and Ŕemi Zajac. Typed unification grammars. InProceedings of the 13th Interna-
tional Conference on Computational Linguistics—CoLing’90, Helsinki, Finland, August 1990.

14.http://arxiv.org/PS\ cache/cs/pdf/9312/9312101.pdf
15.http://citeseer.ist.psu.edu/article/donini97reasoning.html
16.http://citeseer.ist.psu.edu/donini98allog.html
17.http://elib.uni-stuttgart.de/opus/volltexte/1999/93/

83



HASSAN A ÏT-KACI

Martin C. Emele and Ŕemi Zajac. A fixed point semantics for feature type systems. InProceedings
of the 2nd International CTRS Workshop, Montreal (June 1990), number 516 in Lecture Notes
in Computer Science, pages 383–388. Springer-Verlag, 1992.

Leonidas Fegaras and David Maier. Optimizing object queries using an effective calculus.ACM
Transactions on Database Systems, 25(4):457–516, December 2000.[Available online18].

Bernd Fischer. Resolution for feature logics. InGI-Fachgruppeüber Alternative Konzepte
für Sprachen und Rechner, pages 23–34. GI Softwaretechnik Trends, April 1993.[Available
online19].

Jurgen Frohn, Rainer Himmeroder, Paul-Thomas Kandzia, Georg Lausen, and Christian Schlep-
phorst. FLORID: a prototype for F-Logic. InProceedings of the 13th International Conference on
Data Enginereeing—ICDE’97, page 583ff , Birmingham, UK, April 1997.[Available online20].

Joseph Goguen. What is unification? In Hassan Aı̈t-Kaci and Maurice Nivat, editors,Resolution of
Equations in Algebraic Structures—Algebraic Techniques, chapter 6, pages 217–261. Academic
Press, 1989.[Available online21].

Benjamin Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. Description Logic Programs:
Combining Logic Programs with Description Logic. InProceedings of the World Wide Web
Conference—WWW 2003, pages 48–57, Budapest, Hungary, May 2003.

Torsten Grust. A versatile representation for queries. In P.M.D. Gray, L. Kerschberg, P.J.H. King,
and A. Poulovassilis, editors,The Functional Approach to Data Management: Modeling, Ana-
lyzing and Integrating Heterogeneous Data. Springer, September 2003.[Available online22].

Jochen Heinsohn, Daniel Kudenko, Bernhard Nebel, and Hans-Jrgen Profitlich. An empirical
analysis of terminological representation systems.Artifical Inteligence, 68(2):367–397, 1994.
[Available online23].

Jacques Herbrand.Logical Writings. Harvard University Press, Cambridge, MA, 1971. Edited by
Warren D. Goldfarb.

Markus Ḧohfeld and Gert Smolka. Definite relations over constraint languages. LILOG Report 53,
IWBS, IBM Deutschland, Stuttgart, Germany, October 1988.[Available online24].

Ian Horrocks and Peter F. Patel-Schneider. Optimising propositional modal satisfiability for descrip-
tion logic subsumption. InProceedings of the International Conference on Artificial Intelligence
and Symbolic Computation—AISC’98, number 1476 in Lecture Notes in Computer Science,
pages 234–246. Springer-Verlag, 1998.[Available online25].

18.http://lambda.uta.edu/tods00.ps.gz
19.http://www.infosun.fmi.uni-passau.de/st/papers/resolution/
20.http://citeseer.ist.psu.edu/frohn97florid.html
21.http://www-cse.ucsd.edu/∼goguen/pps/subs.ps
22.http://www.fmi.uni-konstanz.de/∼grust/files/monad-comprehensions.pdf
23.http://citeseer.ist.psu.edu/article/heinsohn94empirical.html
24.http://citeseer.ist.psu.edu/hohfeld88definite.html
25.http://citeseer.ist.psu.edu/article/horrocks98optimising.html

84



DATA MODELS AS CONSTRAINT SYSTEMS

Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoningfor expressive description
logics. In Harald Ganzinger, David McAllester, and Andrei Voronkov,editors,Proceedings of the
6th International Conference on Logic for Programming and Automated Reasoning—LPAR’99,
number 1705 in Lecture Notes in Computer Science, pages 161–180. Springer-Verlag, 1999.
[Available online26].

Gérard Huet.Constrained Resolution: A Complete Method for Higher-Order Logic. PhD thesis,
Case Western Reserve University, Cleveland, OH, USA, 1972.

Gérard Huet. Ŕesolution d’́equations dans des langages d’ordre 1, 2, . . . ,ω. Thèse d’́etat, Universit́e
de Paris VII, Paris, France, 1976.

Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. InProceedings of the 14th ACM
Symposium on Principles of Programming Languages, Munich, W. Germany, January 1987.

Joxan Jaffar and Michael J. Maher. Constraint Logic Programming: A survey. Journal of Logic
Programming, 19/20:503–581, 1994.[Available online27].

Paris C. Kanellakis and Dina Q. Goldin. Constraint programming and database query languages.
In Proceedings the International Conference on Theoretical Aspects ofComputer Software—
TACS’94, pages 96–120. Springer-Verlag, 1994.

Michael Kifer. Flora-2.http://flora.sourceforge.net/, September 9, 2007. Version
0.95 (Androcymbium).

Michael Kifer, Jos de Bruijn, Harold Boley, and Dieter Fensel. A realistic architecture for the
Semantic Web. InProceedings of the International Conference on Rules and Rule Markup Lan-
guages for the Semantic Web—RuleML’05, number 3791 in Lecture Notes in Computer Science,
pages 17–29. Springer-Verlag, 2005.[Available online28].

Michael Kifer, Georg Lausen, and James Wu. Logical foundations of object oriented and frame
based languages.Journal of the ACM, 42(4):741–843, 1995.[Available online29].

Hans-Ulrich Krieger and Ulrich Schäfer. TDL—A type description language for constraint-based
grammars. InProceedings of the 15th Conference on Computational linguistics, pages 893–899,
Morristown, NJ, USA, 1994. Association for Computational Linguistics.[Available online30].

Markus Kr̈otzsch, Pascal Hitzler, Denny Vrandečić, and Michael Sintek. How to reason with OWL
in a logic programming system. In Thomas Eiter, Enrico Franconi, Ralph Hodgson, and Susie
Stephens, editors,Proceedings of the 2nd International Conference on Rules and Rule Markup
Languages for the Semanitic Web, Athens, GA—RuleML 2006, pages 17–26. IEEE Computer
Society, November 2006.

Patrick Lambrix. Description logics.http://www.ida.liu.se/labs/iislab/people/
patla/DL/, 2006. Resource web page.

26.http://citeseer.ist.psu.edu/article/horrocks99practical.html
27.http://citeseer.ist.psu.edu/jaffar94constraint.html
28.http://www.debruijn.net/publications/msa-ruleml05.pdf
29.ftp://ftp.cs.sunysb.edu/pub/TechReports/kifer/flogic.pdf
30.http://www.citebase.org/

85



HASSAN A ÏT-KACI

Daniel Le Métayer. Higher-order multiset programming. InProceedings of the DIMACS work-
shop on specifications of parallel algorithms. American Mathematical Society, DIMACS series
in Discrete Mathematics, 1994. Volume 18.

Alon Y. Levy and Marie-Christine Rousset. CARIN: A representation language combining Horn
rules and description logics. InEuropean Conference on Artificial Intelligence, pages 323–327,
1996. [Available online31].

Alon Y. Levy and Marie-Christine Rousset. Combining Horn rules and description logics in CARIN.
Artificial Intelligence, 104(1-2):165–209, 1998.

Carsten Lunz. Description logics.http://dl.kr.org/, 2006. Resource web page.

Michael J. Maher. Complete axiomatizations of the algebras of finite rational and infinite trees. In
Proceedings of the 3rd Conference on Logic in Computer Science—LICS’88, pages 348–357.
IEEE Computer Society, June 1988a.

Michael J. Maher. Complete axiomatizations of the algebras of finite rational and infinite trees.
Technical report, IBM T.J. Watson Research Center, Yorktown Heights, NY, USA, 1988b.
[Available online32].

Zohar Manna and Richard Waldinger. Fundamentals of deductive program synthesis. In Al-
berto Apostolico and Zvi Galil, editors,Combinatorial Algorithms on Words, NATO ISI Series.
Springer-Verlag, 1991.[Available online33].

Alberto Martelli and Ugo Montanari. An efficient unification algorithm.ACM Transactions on
Programming Languages and Systems, 4(2):258–282, April 1982.

Boris Motik, Ian Horrocks, Riccardo Rosati, and Ulrike Sattler. Can OWL and Logic Programming
live together happily ever after? In I. Cruzet al., editor, Proceedings of the 5th International
Semantic Web Conference—ISWC 2006, number 4273 in Lecture Notes in Computer Science,
pages 501–514. Springer-Verlag, November 2006.

Martin Müller, Joachim Niehren, and Andreas Podelski. Ordering constraints over feature trees.
Constraints, 5(1–2):7–42, January 2000. Special issue on CP’97, Linz, Austria. [Available
online34].

Martin Müller, Joachim Niehren, and Ralf Treinen. The first-order theory of ordering constraints
over feature trees.Discrete Mathematics & Theoretical Computer Science, 4(2):193–234, 2001.
[Available online35].

Gopalan Nadathur and Dale Miller. Higher-order logic programming. In D. Gabbay, C. Hogger,
and A. Robinson, editors,Handbook of Logic in AI and Logic Programming, Volume 5: Logic
Programming, pages 499–590. Oxford University Press, 1998.[Available online36].

31.http://citeseer.ist.psu.edu/article/levy96carin.html
32.http://www.cse.unsw.edu.au/∼mmaher/pubs/trees/axiomatizations.pdf
33.http://citeseer.ist.psu.edu/manna92fundamentals.html
34.http://www.ps.uni-sb.de/Papers/abstracts/ftsub-constraints-99.html
35.http://www.lsv.ens-cachan.fr/Publis/PAPERS/PS/dm040211.ps
36.http://www-users.cs.umn.edu/∼gopalan/papers/holp.ps

86



DATA MODELS AS CONSTRAINT SYSTEMS

Bernhard Nebel and Gert Smolka. Representation and reasoning with attributive descriptions. In
K.H. Blasius, U. Hedtstuck, and C.-R. Rollinger, editors,Sorts and Types in Artificial Intelli-
gence, volume 418 ofLecture Notes in Artificial Intelligence, pages 112–139. Springer-Verlag,
1990.

Bernhard Nebel and Gert Smolka. Attributive description formalisms and therest of the world.
In O. Herzog and C.-R. Rollinger, editors,Text Understanding in LILOG: Integrating Compu-
tational Linguistics and Artificial Intelligence, volume 546 ofLecture Notes in Artificial Intelli-
gence, pages 439–452. Springer-Verlag, 1991.

Gordon D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI FN-
19, University ofÅrhus,Århus, Denmark, 1981.[Available online37].

Alun Preece, Stuart Chalmers, Craig McKenzie, Jeff Z. Pan, and PeterGray. Handling soft con-
straints in the semantic web architecture. In Pascal Hitzler, Holger Wache, and Thomas Eiter,
editors,Online proceedings of the WWW 2006 Workshop on Reasoning on the Web, Edinburgh,
May 2006.[Available online38].

John A. Robinson. A machine-oriented logic based on the resolution principle. Journal of the ACM,
12:23–41, January 1965.

Konstantinos Sagonas, Terrance Swift, and David Scott Warren. The XSB programming system. In
Proceedings of the ILPS’93 Workshop on Programming with Logic Databases, pages 164–193,
1993.

Davide Sangiorgi. Coinduction in programming languages. Invited Lecture ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages—POPL’04, January 2004.
[Available online39].

Vijay Saraswat. Concurrent Constraint Programming. PhD thesis, Carnegie-Mellon University,
Pittsburgh, PA, January 1989.

Manfred Schmidt-Schauß and Jörg Siekmann. Unification algebras: An axiomatic approach to
unification, equation solving and constraint solving. Technical Report SEKI-report SR-88-09,
FB Informatik, Universiẗat Kaiserslautern, 1988.[Available online40].

Manfred Schmidt-Schauß and Gert Smolka. Attributive concept descriptions with complements.
Artificial Intelligence, 48:1–26, 1991.

Yi-Dong Shen, Li-Yan Yuan, Jia-Huai You, and Neng-Fa Zhou. Linear tabulated resolution based
on Prolog control strategy.Theory and Practice of Logic Programming, 1(1):71–103, 2001.

Gert Smolka. A feature logic with subsorts. LILOG Report 33, IWBS, IBMDeutschland, Stuttgart,
Germany, May 1988.

37.http://citeseer.ist.psu.edu/plotkin81structural.html
38.http://www.aifb.uni-karlsruhe.de/WBS/phi/RoW06/
39.http://www.cs.unibo.it/∼sangio/DOC\ public/TalkPOPL.ps.gz
40.http://www.ki.informatik.uni-frankfurt.de/papers/schauss/unif-algebr.pdf

87



HASSAN A ÏT-KACI

Gert Smolka. Feature constraint logic for unification grammars.Journal of Logic Programming,
12:51–87, 1992.

Gert Smolka. Residuation and guarded rules for Constraint Logic Programming. In Fŕed́eric Ben-
hamou and Alain Colmerauer, editors,Constraint Logic Programming: Selected Research, pages
405–419, Cambridge, MA, 1993. The MIT Press. Chapter 22.

Gert Smolka. A foundation for higher-order concurrent constraint programming. In Jean-Pierre
Jouannaud, editor,Proceedings of the 1st International Conference on Constraints in Computa-
tional Logics, number 845 in Lecture Notes in Computer Science, pages 50–72. Springer-Verlag,
September 1994.

Gert Smolka and Ralf Treinen. Records for logic programming.Journal of Logic Programming, 18
(3):229–258, April 1994.[Available online41].

Ralf Treinen. Feature trees over arbitrary structures. In Patrick Blackburn and Maarten de Rijke,
editors,Specifying Syntactic Structures, chapter 7, pages 185–211. CSLI Publications and FoLLI,
January 1997.[Available online42].

Jeffrey Ullman. Introduction to datalog and stratified negation.http://infolab.stanford.
edu/∼ullman/cs345notes/cs345-1.pdf, 2003. CS 345 Lecture Notes.

Rémi Zajac. Towards object-oriented constraint logic programming. InProceedings of the
ICLP’91 Workshop on Advanced Logic Programming Tools and Formalisms for Natural Lan-
guage Processing, Paris, June 1991.

Rémi Zajac. Inheritance and constraint-based grammar formalisms.Computational Linguistics., 18
(2):159–182, 1992.

41.http://www.lsv.ens-cachan.fr/Publis/PAPERS/PS/ST-jlp94.ps
42.http://www.lsv.ens-cachan.fr/Publis/PAPERS/PS/FeatArbStruct.ps

88


