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Abstract

This article illustrates how constraint logic programmdagn be used to express data models in rule-
based languages, including those based on graph pattechingaor unification to drive rule appli-
cation. This is motivated by the interest in using constrbased technology in conjunction with
rule-based technology to provide a formally correct andaife—indeed, efficientl—operational
base for the semantic web.
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1. Introduction

This article was written upon the invitation by CP 2006’s organizers to expatite contents of my
communication as member of CP 2006’s panel‘®he next 10 years of constraint programming”
(Ait-Kaci, 2006). Its essential message is thatdbmantic webs a particularly attractive area for
applications of constraint-based formalisms. This is true since the latteaaftsriarative paradigm
for expressing virtually anything that has a formal, especially logical, seesaimcluding efficient
operational semantics. Semantic-web researchers are currently imrboitpf a means to integrate
“static knowledge” based.€é., ontologies) with “dynamic knowledge” basese( rules). Thus, it
is herein argued that constraint logic programmi@g®) is quite suitable a candidate for such an
integration. The key is to use constraints to abstract data models upon wigidhaised computation
may be carried out. Thus, the next 10 years may be the most fructifyirfignenstraint and WWW
technologies should both communities seize the opportunity to cross-bréetiae offered by the
construction of the semantic web. To be sure, this author does not clairdikmwery of this fact.
Indeed, several promising directions in this vein are being actively asaticely mined as we
speak—so to speak! This is true in particular for web-service disceveeg e.g, (Benbernou and
Hacid, 2005; Preece et al., 2006).

1.1 Motivation

The author recently attended the 5th international semantic web confd@nzeet al., 2006). It

was his“first” such conference, his interest having been spurred as a member obtlkWide

Web Consortium (W3C) Working Group (WG) on designing a Rule Intargha=ormat (RIF) as
ILOG, Inc.’s representative. In both venues, several propdsale been put forth on the subject of
“integrating rules and ontologiesThe most prominent vein among these proposals centers on the
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integration of logic programmingZ(P) style of rules é.g, Prolog), with the various declensions of
one or several of théofficial” W3C ontology languageg.g, OWL—Lite, DL, Full—or whatever
version of variousdescription logicDLs) and their ancillary XML-based technologies (Motik
et al., 2006; Grosof et al., 2003; &wzsch et al., 2006).

However, it appears that only very few have yet exploited the powarfd flexible computa-
tional paradigm known asonstraint logic programminf £LP), which naturally—and formally!—
enables such integrations, both semanticaliy operationally: This is odd since one of the best
formulations of this formalism, presented bykfeld and Smolka (1988), was originally proposed
for the very purpose of integratingP with DLs! That theCLP scheme has not been thus far used
asthekey for achieving this integration is all the more surprising taking into accihatthe main-
stream of work on formal ontologies for the semantic web trace back thgin o the formulation
introduced by Schmidt-Schau3 and Smolka (1991).

Hence what motivates this author is to explain precisehy and how the CLP scheme is
adequate for the marriage of rules and ontologies. Concommitantly, the RIFeg@sted a similar
kind of explication for how constraints may be an appropriate formalismdpturing “real life”
data models such as thoseJava, C#, or evenC++. The issues we address in this paper are thus
all the more timely for this reason as well.

1.2 Relation to other work

How, then, does our proposal relate to other work? And hasn’t @instechnology already been
used for the semantic web? We presently review what we know of othmtsetb mix rules and
ontologies for the semantic web, and how constraint technology has bedn u

A means to use description logic as a constraint language in a Horn rulealgmgas in fact
worked out before by Bucheit et al. (1993). That work is in fact t®tbktical foundation ofl £-log
(Donini et al., 1998) and CARIN (Levy and Rousset, 1998), and is itsdifect adaptation of the
constraint system originally proposed by Schmidt-Schaul and Smolka)(®®ason about typed
attributive concepts. Indeed, it falls within (or very close to) the appgraee present here. It is
based on seeinB L statement constraints in the exact same sense as we say. But, althougtethey u
a solving process based on formula transformation, it differs from hderesorted featureg{SF)
constraints are solved—see Section 3.1. The latter is based on corgnlesure of feature paths
(generalizing Herbrand unification) amdducesa constraint to solved form at. The former is
based on a Deductive Tableau method aadhpletesa constraint by adding more constraints until
it reaches a saturation state, which may then be decided consistent ohisdeadlds to problematic
performance problems, especially for scalability when used on very tenigéogies. Furthermore,
using such eagerly saturative methods makes it clearly impossible to deakwitidecidable con-
straint systems. On the other hand, lazily reductive methodiK& constraint solving can, by
delaying potentially undecidable constraints until further information ensitesse points are fur-
ther elaborated in Section 4.2. Finally, no formal connection withdi®& semantic scheme is
made by Bucheit et al. (1993). Nevertheless, what they proposbdsa fideexemplar of seeing
data description as constraints. We will discuss further this approactctio®&.3.3, in relation
with the material on th€©SF andDL formalisms presented in Sections 3.1 and 3.2.

F-Logic (Kifer et al., 1995) is one popular formalism claimed to be adequatéhé reasoning
power needed for semantic-web applications (Kifer et al., 2005). Itasradl logic-programming

1. The reader is referred to (Jaffar and Maher, 1994) for anllextesurvey ofC LP’s power and potential.
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paradigm designed to accommodate a “frame” notation extending that afafierterms—so-called
slottedterms—allowing specifying subterms by keywords rather than position. Tihédian, used
in lieu of arguments of predicates appearing in Horn rules, allows writing er attributed ob-
jects. There are runningP systems based on F-Logic: for example, FLORID (Frohn et al., 1997)
and Flora-2 (Kifer, September 9, 2007). Although the syntax of F-L&gims is close to that of
OSF terms, which we present here, they do not have the same semantics at ahel-6&-Logic
terms denote fully defined individuals whilBSF terms (likeDL concept expressions), denote
sets as well as individuals (singleton sets). This is the difference betavpartial description and
a complete one: with the former a term is an approximation of individuals (incluctingpletes
ones), and with the latter terms may only denote complete individuals. Another diffégoence is
that, although F-Logic offers notation for slotted objects, classes, amditahce, its semantics is
not based ol £LP, and objects, classes, and inheritance are not processed asiotssRather,
F-Logic merely offers syntactic sugar that is transformed into a semanticpliyaenttabulated-
logic programming form. The resulting program, when executed, realizexyfe’s semantics op-
erationally.

Although this approach is a perfectly admissible manner to proceed, it misse®ititewe
advocate here. For one, by relying on the underlying all-purp&Bereasoning engine misses
performance gains made possible by special-purpose solving metholdsgid-needs to use a
tabulated logic programming language such as XSB Prolog (Sagonas @948l ,rather than stan-
dard Prolog to avoid some termination pitfalls. Indeed, in order to handlesieeLclass defi-
nitions, one needs prodfnemoizing” such as supported by tabulated-logic programming (Shen
et al., 2001). Tabulated-logic programming is a family of Horn-clause résokbased logic-
programming languagesie., Prolog—with a modified control strategy that uses proof-memaoizing
techniques inspired from Dynamic Programming. Control records the mostaeroofs it has so
far undertaken or achieved for any predicate usatges(i.e., relationalcache}.> Hence, this can
avoid falling into fruitless infinite derivations when a proof is found to belgpsoof of itself—e.g,
such as may be generated by a left-recursive rule. Thus, our essentiarn is that F-Logic does
not abide by the “data as constraint” slogan we are advocating here.

1.3 Organisation of contents

The remainder of our presentation is organized as follows. The style imiaf@enal tutorial. Its
real aim is to stress subtle paradigm shifts that are of primordial importanagepireciating the
potential ofCLP as opposed to plaidP or CP. Thus, Section 2 synopsizes the essenaedip.
We present the basic scheme introduced by Jaffar and Lassez @®98&fprmulated by bhfeld
and Smolka (1988). Section 2.2 deals with hosnstraint solvingas opposed tgeneral-purpose
logical reasoninyis then put to practical use for meshing various data models in harmony with
the logical rule semantics manipulating them. In Section 2.3, we show how the ddtlsnod
Datalog and Prolog are expressed as constraints fitting f/2¢ scheme. In Section 3, we turn
to typed attributed structures and express those as constraints. Sectgine3. summary of
the OSF formalism for describing data that takes the form of rooted labelled greféstion 3.2
gives a summary of basic Description Logic. Both formalisms are meant torbbaffdanguages

2. One must not confuskbulatedLP (Shen et al., 2001) witheductive tablealtP (Manna and Waldinger, 1991).
A deductive tableau is also a table, but of a different kind whose ropresent assertions and goals, and may be
transformed by appropriate deduction rules—non-clausal resolutibmauction, essentially.

35



HASSAN AIT-KACI

for describing typed attributed data structures denoting sets. Section arEsrthe expressivity

of both and how they are related. In Section 3.3, specific examples of dasrare specified as
constraints—includinglava-style classes and objects, but also OWL-type ontologies. Section 4
analyzes the relative expressive and computational powers 6?8 andDL formalisms. Last,

we conclude in Section 5 with some perspective opened by our prooshlef semantic web to
view ontologies as constraints. We also adjoin a small appendix to recall teasimology on
Herbrand terms and substitutions in Section A, on monoidal algebra in SectamdBa technical
note on strong extensionality in Section C.

2. Constraint logic programming

In 1987, at the height of research interest in logic programming, Jaffhi. assez proposed a novel
logic-programmingschemethey calledconstraint logic programmin@Jaffar and Lassez, 1987).
The idea was to generalize the operational and denotational semanti¢3 lo§ dissociating the
relational level—pertaining to resolving definite clauses made up of relativois—and the data
level pertaining to the nature of the arguments of these relational amgddr Prolog, first-order
Herbrand terms). Thus, for example, in Prolog seen@$§7 language, clauses such as:

append([],L,L).
append([H T],L,[HR) :- append(T,L, R.

are construed as:

append( X1, X2, X3) :- true
| X1 =11, X2 =L, X3 =1L.
append( X1, X2, X3) :- append( X4, X5, X6)
| XL =[HT], X2 =1L, X3 =[HR,
X4 =T, X5 =L, X6 =R

The ‘| " may be read assuch that” or as “subject to.” It is in fact the logical connective
“and”—i.e., as the one denoted bycamma(’,’). The part of the rule’s RHS on the right of thg*
is called itsconstraintpart. It keeps together specific parts of the goal formula making the biody o
the rule—in this case, equations among (first-order) Herbrand termsreghef the rule besides
the constraint is made up of relational atoms where all variables are distiagab\és are shared
between the relational rule part and the rule constraint.

At first sight, the above reformulation of tlg@pend predicate may look like a silly and more
verbose rewriting of the same thing. And why thé father than the,"’ if they mean the same
thing?

Itis, indeed, a harmless rewriting of the same thing. But it is not so useddsshall presently
contend. Importantly, it isolates a subset of the factors of the logmglinctionthat:

1. commuteswith the other factors in the conjunction; and,

2. may besolvedusing a special-purpose constraint solver, presumably more efficieatty th
any general-purpose logic rule inference engine.
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In addition, as we next explicate, it enables expressing a clean abstoge-theoretic as well

as moreoperationalproof-theoretic semantics for a large class of rule-based languageslisvy
parate data models—not just Herbrand terms. In particular, it is a nanotadféective means for
integrating rule-based programming with data-description logics—currehtbhyaGrail being ac-
tively sought to enable theemantic webAt least this is the impression one gets from such recent
semantic-web conference papers sucleag, (Motik et al., 2006).

2.1 TheCLP scheme

In (Hohfeld and Smolka, 1988), a refinement of the scheme of (Jaffar aas£al1987) is presented
that is both more general and simpler in that it abstracts away the syntansifaiot formulae and
relaxes some technical demands on the constraint language—in partibalagpmewhat baffling
“solution-compactnesstondition required in (Jaffar and Lassez, 1987).

The Hohfeld-SmolkaC £LP scheme requires a s& of relational symbolgor, predicate sym-
bols) and aconstraint languagé. It needs very few assumptions about the languagehich must
only be characterized by:

e V), a countably infinite set ofariables(denoted as capitalize¥, Y, .. .);

e ®, a set offormulae(denotedy, ¢, . . .) calledconstraints

a functionvar: ® — V), which assigns to every constraigtthe setvar(¢) of variables
constrained by,

a family of admissiblénterpretation®l over some domai?;

the setvAL (1) of (A-)valuationsi.e. total functionsp : V — D%,

By “admissible” interpretation, we mean an algebraic structure and semanticrhorphisms
that are appropriate for interpreting the objects in the constraint domaingxemple, if the con-
straint domain is the set of first-order (Herbrand) terms on a rankedtsignof uninterpreted func-
tion symbols, and the constraints are equations among these-Rrolog—then, any Herbrand
interpretation would be an admissible interpretation for this specific conskzaigage.

Thus, L is not restricted to any specific syntaxpriori Furthermore, nothing is presumed about
any specific method for proving whether a constraint holds in a giverpirgttion?l under a given
valuationa. Instead, we simply assume given, for each admissible interpretdti@function
[]% : @ — 2VAL (W that assigns to a constrainte @ the set[4]* of valuations, which we call
the solutionsof ¢ under|.

Generally, and in our specific case, the constrained variables of &&ong will correspond
to its free variables, and is a solution ofp under the interpretatio®! if and only if ¢ holds true in
2 once its free variables are given valuesAs usual, we shall denote this &,a = ¢.”

Then, givenR, the set of relational symbols (denoted-, ...), and£ as above, the language
R(L) of relational clausegxtends the constraint languageas follows. The syntax oR (L) is
defined by:

e the same countably infinite sgtof variables

e the setR(®) of formulaep from R (L), which includes:

3. “Compactnessin logic is the property stating that if a formula is provable, then it is provablmitely many steps.
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— all £-constraintsj.e,, all formulae¢ in @;
— all relational atomsg (X1, ..., X,,), whereX;, ..., X,, € V, mutually distinct;

and is closed under the logical connectives (conjunction) and— (implication);i.e.,

— 01 & 02 € R(®) if 01,02 € R(P);
— 01 — 02 € R(®) if 01,00 € R(P);

e the functionvAar : R(®) — V extending the one ot in order to assign to every formula
the setvAR (o) of the variables constrained hy

- VAR(r(X1,..., X)) = {X1,..., X,,};
— VAR (01 & 02) = VAR(01) U VAR(p2);
— VAR (01 — 02) = VAR(01) U VAR(02);

e the family of admissiblenterpretations2l over some domairD? such that2l extends an
admissible interpretatio, of £, over the domainD* = D% py adding relationg® C
D* x ... x D¥for eachr € R;

e the same setaL () of valuationso : V — D,

Itis important to note that each variable occurs only once in each atom, anaiher relational
atom in a given clause. One may think of this as each relational atom havimguwewariable name
for each of its arguments. Of course, these variables may (and usuBllgar in the constraint
part; e.g, in the form of argument bindingX = e. This requirement of “distinctness” for the
variables appearing in relational atoms is simply for each variable to ideniidyely the argument
of the atom it stands for, while ensuring that no inconsistency may evenaitis a constraint store.
Only the constraint side of a clause may thus be inconsistent, as will be splamed.

Again, for each interpretatio®l admissible forR(L), the function[_]* : R(®) — 2VAL ()
assigns to a formula € R(®) the sef4¢]* of valuations, which we call theolutionsof ¢ under2!.

It is defined to extend the interpretation of constraint formula® i@ R(®) inductively as follows:

o [r(Xy,.... X)]* = {a]{a(Xy),...,a(X,)) € r?;

o o1& = [01]* N [ga]™;

o [p1— do]* = (VAL(A) — [¢1]*) U [$2]*.
Note that anC-interpretatiorfly corresponds to aR (L£)-interpretatiorf, namely where-?0 = ()
for everyr € R.

As in Prolog, we shall limit ourselves wefinite relational clauses R (L) that we shall write
in the form:

r(X) (X)) & ... &rn(Xn) | 6 (1)

where(0 < m) and:

o #(X),r1(X1),...,rm(X,) are relational atoms iR (£); and,

e ¢ is a constraint formula if.
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Again, the symbol| is just & in disguise. It is only used to make the various constituents more
conspicuous, separating relational resolvent from the constramufaxs.

Given a seC of definite R(L)-clauses, anodel M of C is anR(L)-interpretation such that
every valuatiorr : V — D™ is a solution of every formulain C, i.e,, [o]™ = VAL (901). In fact,
any L-interpretatiorRl can be extended torminimal model9t of C. Here, minimality means that
the added relational structure extendifigs minimal in the sense that 91’ is another model of,
thenr™ C v (C D% x ... x D¥) for all » € R. For further details, see @feld and Smolka,
1988).

Also, a least fix-point semantics construction of minimal model§ &P programs is given in
(Hohfeld and Smolka, 1988). The minimal mo@a&l of C extending theC-interpretatior( can be
generated as the limt = | J,.,2; of a sequence oR(L)-interpretations; as follows. For all
r € R we define: -

7”% DEF @;

rien 2 fa(zy), ... o(z) | o€ [o]® 5 r(2,...,20) « 0 € C)s ()

m e 2
r = Uizori-

A resolventis a formula of the formp | ¢, wherep is a possibly empty conjunction of
relational atoms: (X7, ..., X,,)—its relational part—and ¢ is a possibly empty conjunction af-
constraints—itconstraint part Again, | is just & in disguise and is used only to emphasize
which part is which. (As usual, an empty conjunction is assimilatadu® the formula that takes
all arbitrary valuations as solution.)

Finally, the Hbhfeld-Smolka scheme defines constrainesblutionas a reduction rule on re-
solvents that gives a sound and complete interpretepfogramsconsisting of a sef of definite
R(L)-clauses. The reduction ofrasolventR of the form:

Bi& ... &r(Xy,...,. Xp) & ...B | & (3)

by the (renamed) program clause:
r( Xy, Xp) — A1 & ... & A, | ¢ 4)

is the new resolvenk’ of the form:
Bi& ... &M & ... &An& ... .By | 0& ¢ (5)

The soundness of this rule is clear: under every interpret&tiand every valuation such that
R holds, then so doeR/, i.e, [R']* C [R]®. Itis also not difficult to prove its completeness: if
21 is a minimal model of’, anda € [R]]fm is a solution of the formuld in 971, then there exists a
sequence of reductions of (t/R(£)-formula) R to anL-constraintp such thaty € [¢]™.

Before we give our formal view of constraint solving as a proof systetus recapitulate a few
important points:

e Although semantically discriminating some specific formulae as constraint€,dReview
agrees, and indeed uses, the interpretation of constraints as formuwiaénhleriting “for
free” a crisp model-theory as shown above.
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e Better yet, the most substantial benefit is obtained operationally. Indésds #o because
we can identify among all formulae to be proven some specific formulae todeegsed
as constraints, for which presumably a specific-solving algorithm may dxk nasher than a
general-purpose logic-programming machinery.

The above remarks are perhaps the most important idea regardi@g thepproach. Indeed,
many miss this point‘Constraints are logical formulae—so why not use only logi&ire, con-
straints are logical formulae—and thagisod! But the fact that such formulae, appearing as factors
in a conjunctioncommutewith the other non-constraint factors enables freedom for the opeahtion
scheduling of resolvents to be reduced. This is the key situation beingitexbio our approach.
Yet another serendipitous benefit of this state of affairs is that it enatdes declarative operational
semantics than otherwise possible thanks to the technique ofegidiiationAit-Kaci et al., 1987,
Ait-Kaci and Nasr, 1989; Smolka, 1993jtAaci et al., 1994b). As well, as explained initAaci
et al., 1997), an important effect of constraint solving is that it enabd@mple means toemember
proven fact(i.e., proof memoizing)—something that model-theory is patently not concerned with
(See also Sections 1.2 and 3.3.4.)

Thanks to the separation of concerns explicated above between rdlesmrstraints, we may
use constraint solving operationally esalizingthe logical semantics afonstraints as logical for-
mulaeusing special-purpose algorithms using a proof-theoretic notion of @mstiormalization
We explain this next.

2.2 Constraint solving

In the Hohfeld-SmolkaC LP scheme, the language of constrainis not syntactically specified in
any way, except that it makes use of the same set of variables as thenadlatie part. Special val-
uationsa : V — D% of variables taking values in an appropiate semantic domain of interpretation
are deemedolutionsin the sense that thesatisfyall constraints as mandated by théP scheme.
How to find these solutions operationally is orthogonal todidé® model-theoretic semantics. A
specific operational process computing constraint solutions is cadlesttraint solving It may be
specified in any operational way as long as it may be formally proven todpectavith respect to

the logical semantics of the constraints.

$Decision problems -There are two decision problems of interest regarding constraints in-a con
straint languag@®: (1) consistencyand (2)entailment

The constraintL, called theinconsistent constrainis such thatl, « [~ L for every inter-
pretation? and A-valuationa. Two syntactic expressionsande’ are said to besyntactically
congruert—notede ~ ¢/—if and only if they denote the same semantic objeiz;, [e] = [€'].

Definition 1 (Constraint consistency) A constrainte is said to beconsistenif and only if¢ 2 1.
Thus, when data structuresandt’ are viewed as constraints, we say that theywariéiable if

and only if the constraint = ¢’ is consistent. When andt’ are unifiable unificationof t andt’

is the operation that computes a valuatieisuch thata(¢) and«(t') are identical data structure.

Clearly then, unifiability is a symmetric relation and unification is a commutative tpera

Definition 2 (Constraint entailment) Given two constraint® and¢’, ¢ is said toentail¢’ if and
only if 2, o £ ¢ or 2, « |= ¢’ for every interpretatior®l and2(-valuationa.
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Given two data structurgsandt’, we say that subsumesor is more general thgrt' if and only
if ¢’ entailst when viewed as constraints. Whesubsumeg’, pattern-matchings the operation
computing a valuation such thatx(¢) andt’ are identical data structure. We then say thaatches
t’. Clearly then, entailment is an asymmetric relation and pattern-matching is sonunttative
operation.

Typically, unification is used in rule-based computational systems sugtPasnd equational
theorem-proving, while pattern-matching is used in rule-based systemsresiritg rules or pro-
duction rules. The former allows refining input data to accommodate syedasthe latter forbids
modifying input data. Finally, note that pattern-matching can itself be redocednification prob-
lem by treating all the variables of the entailing data structure as constarissis Hkin to stating
that constraing entails constraing’ if and only if ¢ & ¢’ ~ ¢.

Therefore, when data structures are viewed as constraints desaldtimgthe only decision
procedure that is needed for constraint solving is consistency clgeckin

$Constraint normalization — Because constraints are logical formulae, constraint solving may be
done by syntax-transformation rules in the manner advocated by Plotk#i1%uch a syntax-
transformation process is callednstraint normalizatianlt is convenient to specify it as a set of
semantics-preserving syntax-driven conditional rewrite rules caldedtraint normalization rules
We shall write such rules in “fraction” form such as:

(A,) RULE NAME :

Prior Form
[cOndi ti on]

Posteri or Form

whereA,, is a label identifying the rule4 is the rule’s constraint system’s name, anid a number,

or a symbol, uniquely identifiying the rule within its system. Such a rule specifi@slie prior for-
mula may be transformed into the posterior formula, modulo syntactic congrsig@andi t i on

is an optional side metacondition on the formulae involved in the rules. Where aaidlition is
specified, the rule is applied only if this condition holds. A missing condition is impliétily. A
normalization a rule is said to mrrectif and only if the denotation of the prior is the same as that
of the posterior whenever the side condition holds.

$Normal form — A constraint formula that cannot be further transformed by any norntializa
rule is said to be imormal form Thus, given a syntax of constraint formulae, and a set of cor-
rect constraint-normalization rules, constraint normalization operategdogssively applying any
applicable rule to a constraint formula, only by syntax transformation.

§Solved form —Solved forms are particular normal forms that can be immediately seen to sis-con
tent or not. Indeed, normal forms constitute a canonical representatiooristraints. Of course, for
constraint normalization to be effective for the purpose of constrainingg a rule must somehow
produce a posterior form whose satisfiability is simpler to decide than thatmiatsform. Indeed,
the point is to converge eventually to a constraint form that can be trivieltyjdeéd consistent, or
not, based on specific syntactic criteria.

$Residuated form —Constraints that are in normal form but not in solved form are cateitiu-
atedconstraints. Such a constraint is one that cannot be normalized angrfuth that may not
be decided either consistent or inconsistent in its current form. Thanttetoommutativity of
conjunction, residuated forms may be construedwspendeadomputation. Indeed, because con-
straint normalization preserves the logical semantics of constraints, tbessocommuteswith the
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relational resolution as expressed by thé&P resolution operation that yields a new constrained
resolvent (5) from an old constrained resolvent (3) and a constraiaese (4). This interplay es-
tablishes “for free” an implicitoroutiningbetween the resolution and constraint-solving processes
as these processes communicate through their shared logical variables.

We next specify some common logic-programming rule dialect classes usidg fhescheme
by explicating the kind of constraint formulae they are manipulating, with wbiahalization rules,
and towards what solved forms.

2.3 Examples

To illustrate the foregoing scheme, we now recast the two well-known loggramming languages
Datalog and Pure Prolog in terms@£P by explicating their constraint systems.

2.3.1 DATALOG

Datalog is a simplified logic-programming dialect sufficient for expressitafiomal data, views,
and queries, as well as recursion. It is a formal tool used by académniespressing computation
in Deductive Databases (Ullman, 2003).

A Datalog program consists of two parts: amensionaldatabase (IDB) and aextensional
database (EDB). The IDB is an unordered collection rules of the form:

ro(d, ... %) — Nai(di,....d.).
i>1

where ther;’s are relational symbols, the’s are possibly negated relational symbals.( eitherr
or —r), and thedili 's are either logical variables or constants. The EDB is an unordetktiton
of relational tuples of the form:

r(c1,y ... cn).

wherer is a relational symbol that does not appear as the head of an IDB ruehan;’'s are
constants. When no negation is allowed in the rules, the dialect is datleiive Datalog\When
negation is restricted so that no rule head’s .) may lead to an atomr(. . .) through any recursive
dependency, the dialect is call&dratified Datalog

It is not difficult to show that the least fix-point model of Positive Datalogaides with that
defined by Equations (2), whef2is the constraint system that solves equations between variables
and values appearing as arguments of tuples in the EDB. This constrajoatgenconsists of con-
junctions of equations of the form= ¢ wheres andt are either variables or constants.

The solved forms are conjunctions of equations either of the f6rea a, whereX is a variable
anda a constant, olX = Y whereY appears nowhere else. Constraint normalization rules are
very simple: given a conjunctioa of such equations, we apply non-deterministically any of the
rules of Figure 1 until none is applicable. The expresgiok/Y] denotes the constraigtwhere
all occurrences ol are replaced byX. These rules areonfluentmodulo variable renaming.
Confluent rules are such that order of application does not matter—® lmave the “Church-
Rosser” property. Recall that constraint normalization rules are ahvaglicitly applied modulo
syntactic congruencewiz., here: associativity and commutativity of thée operator. Clearly, they
also always terminate, ending up either_lin the inconsistent constraint, or in a conjunction of
equations in solved form.
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(D;) ERASE: oL tt
[ if ¢isaconstantor a variablg B
¢
(D3) Fuip:
& a=X
[ if aisaconstantand X is a variable] ¢—
o & X=a
(Ds) SUBSTITUTE:
p & X=Y

[ if X andY are variablesand Y occursing |
HX/Y] & X =Y
(Dy) FAIL:

] ¢ & a=b
[ if aandbare constantsand a # b ] -

L

Figure 1:The constraint systemD

This constraint-normalization process merely amounts to verifying constgamants and
binding variable arguments. Hence, a solved form is nothing other thanding environment
corresponding to a tuple belonging to the model of the computed relaiien-+what we called a
variable valuationd) in Equations (2). With this setup, DatalegCLP (D), whereD is the con-
straint system of Figure 1. We informally use the notati@(.4) to characterize &P language
over a constraint system.

2.3.2 RUREPROLOG

In this section, we describe a hon-deterministic unification algorithm pratastset of constraint-
normalization rules. Each normalization rulecisrrect i.e., it is a syntactic transformation of a set
of equations that preserves all and only solutions of the original camistrgsee Appendix Sec-
tion A for basic notions for first-order Herbrand terms and substitutionki$ i€ in contrast with
Robinson’s unification algorithm, which is (still!) often presented as an atopecadion on terms
(Robinson, 1965). These normalization rules were first formulated tyuds Herbrand in 1930
in his PhD thesis—reprinted in (Herbrand, 1971), Page 148—that ise8&\oefore Robinson’s
algorithm was published! This was already explicitly pointed out in 1976 byafal Huet in his
Frenchthése détat (Huet, 1976). These rules were later rediscovered by Martelli anddani
(1982) —20 years after Robinson’s paper! They were seeking to symglifRobinsons’s algo-
rithm, apparently unaware of Huet's remark. As we shall see later in thisndeit—see Sections
3.1.4 and 3.3.1—this algorithm is a special case of a more general onedra§k$IF constraint-
solving by normalization. For related readings giving a a generalizedaabsiew of unification
and constraint-solving in a category-theoretic setting, see also (Schmidtf&end Siekmann,
1988) and (Goguen, 1989).
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$Herbrand term unification — An equationis a pair of terms, writtes = ¢. A substitutions is a
solution(or aunifier) of a set of equationgs; = ¢;}" , iff s,0 =t;oforalli =1,...,n. Two sets
of equations arequivaleniff they both admitall andonly the same solutions. Following (Martelli
and Montanari, 1982), we define two transformations on sets of equatieng: decomposition
andvariable eliminationThey both preserve solutions of sets of equations.

TERM DECOMPOSITION : If a set E of equations contains an equatigiis, . .., s,)
f(t1,...,tn), wheref € ¥, (n > 0),thentheset = E—{f(s1,...,8n) = f(t1,...,t
U {s; =t;}]~, is equivalent ta&. If n = 0, the equation is simply deleted.

2}

VARIABLE ELIMINATION : If a setE of equations contains an equati@n= ¢ wheret # X,
thenthe set’ = (F — {X =t})o U{X =t} whereo = {t/X}, is equivalent ta&.

A set of equationd? is partitioned into two subsets: isblvedpart and itsunsolvedpart. The
solved part is its maximal subset of equations of the fofm= ¢ such thatX occurs nowhere in
the full set of equations except as the left-hand side of this equation. albieeunsolved part is the
complement of the solved part. A set of equations is said tlulhe solved iff its unsolved part is
empty.

In Figure 2 is a unification algorithm. It is a non-deterministic normalization ghoeefor a
constraintp = ¢; & ... & ¢, corresponding to a sét = {¢1,...,¢,} of equations. ThéCycle”
rule performs the so-calletbccurs-checktest. Omitting this rule altogether yields rational term
unification;i.e., cyclic equations may be obtained as solved forms. Most implemented systems omit
occurs-check either for reason of efficieneyd, most Prolog compilers) or simply because their
data model's semantics hbhena fidenterpretations for cyclic terms-e-g, (Colmerauer, 1990; A
Kaci and Podelski, 1993). For a thorough understanding of the lodiaité and infinite rational
tree constraints, one must read Maher (1988a,b). For linguistics apptisdtased on a formalism
mixing categorial grammars and feature terms, see Damas et al. (1994).

If this non-deterministic equation-normalization process terminates with sjctes set of
equations that emerges as the outcome is fully solved. Its solved partdafibstitution called
the most general unifief(MGU) of all the terms participating as sides of equationsEin If it
terminates with failure, the set of equatiofsis unsatisfiable and no unifier for it exists. Thus,
Prologe CLP(H), whereH is the constraint system of Figure 2.

Of course, the benefit of usingLP to reformulate Prolog and Datalog is only an academic
exercise confirming that it is at least capable of that much expressiverp@oing beyond con-
ventional logic-programming languages’ expressivity, the exact samaanahproceeding can be
(and has been) used for logic-programming reasoning over more iimgrdata models. Examples
are’H* integrating Herbrand terms with interpreted functionses-the A-Calculus—as done by
Ait-Kaci and Nasr (1989), or using guarded rules as done by Smolk&)18r using rewrite rules
over typed objects as done bytALaci and Podelski (1994).

As mentioned before, we will reformulate Herbrand unification in the moreg¢rdrame-
work of OSF constraints, a®)SF constraint normalization. Th@SF approach is more gen-
eral than Jacques Herbrand’s algorithm in the sense that it worksnhpfar Herbrand terms,
but also for order-sorted labelled graph structures usin@&tF constraint syntax that amounts
to conjunctions of finer-grained atomic constraints. Operationally, this alloare commutation
with inference operations such asg, logical resolution, and therefore the more declarative non-
deterministic concurrent entertwining of both processes. Indeed, aenstraint system is only
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ERASE:
[ if teSouY ]

FLIP:

if tisnota variable
and X is avariable

SUBSTITUTE :

[ f

X occursing |

DECOMPOSE:

[ if feS., (n>0) ]

FAIL :

if feXm,
and g€,
and m#n

(m > 0)
(n>0)

CYCLE:

i if X isavariable '|
and tis not a variable
and X occursint J

b & t=t

o & t=X

o & X =t

b & X =t

PIX/] & X =t

¢ & f(Sl,...,Sn) = f(tl,...7tn)
(b& Slﬁtl & ... & Snitn
¢ & f(s1,---y8m) =9g(t1,. . tn)
1

b & X =t

1

Figure 2:The constraint systemH
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semi-decidable-e.g, higher-order unification (Huet, 1972)—complete rule resolution oveh su
constraints is possible by dove-tailing resolution steps and constraint-gasitéps—e.g, AProlog
(Nadathur and Miller, 1998).

In the next section, we develop a finer grain notion of term—whether t&6, Br graph, node-
and/or edge-labelled, with or without arity or schema constraints—to formail@e adequately
modern data models such &sg, objects and their class types, inheritarete, ... Such terms are
defined as specifitcrystallized” syntaxes thatdissolve” into a semantically equivalent conjunc-
tion of elementary constraints. The chemical metaphor of a molecular strdidaodving into a free
solution of ions is quite appropriate here. The term syntax structure fetvecule,” and theions”
are the elementary constraints floating freely in‘tag@ueous solution™i.e., the conjunction. Thus,
the “ions”—i.e., the elementary constraints— are allowedreact”—i.e., be normalized—as they
“move about"thanks to & being associative and commutative. The “emggfjueous solutionfs
the constraintrue. The constrainsolving process thus starts with a constradfi$solvingprocess.
This chemical metaphor is not new and was originally proposed infBaand Le Mtayer, 1986),
and later used to define ti&hemical Abstract Machinghe calculus of concurrency of (Berry and
Boudol, 1990). Although, the chemical metaphor is not made explicit in cogacy models based
on constraints-e.g, (Saraswat, 1989)—it works for constraint-based models of coewccyras
well as forhigher-orderconcurrency models. Concurrent languages such as Gammaé&tayéf,
1994) and Oz (Smolka, 1994) are based on this elegant metaphor.

3. Typed attributed stuctures as constraints

Many modern computation systems are based on a notion of object andAstasisject is a record
structure—:e., a composite structure consisting of a conjunctiorfi@ts holding values A class

is a type of objects—+e., a composite structure consisting of a conjunction of fields holdipgs

A class describes a template for all objects of its type. Object to class anjeigiensured by type
verification. Such type verification may be done partly statically, or dynamicélijmay consist

of type checking—i.e., confirming that all object fields carry only values as prescribed by the ty
of this field in the object’s class—dype inference—i.e., deducing appropriate most general types
wherever type information is missing or incomplete—or both. Static type chechagbe seen
asabstract interpretatiesi.e., a decidable approximation of the dynamic model of computation.
Typically, appropriately calledlependent types-i.e., any type depending on dynamic values—
are checked dynamicallye-g, array bounds indJava. When types are viewed as constraints,
dynamic type checking based on constraint-solving in a logical rule larguay also be used as
a performance booster as it focuses the inference process onliewarevalues. In addition, type
constraints are incrementally memoized as they are verified, therefore aspingof cachesAs a
result, nothing about a type should ever be proved twice.

This relation of object/class type adequacy can be captured precisdlyraradly as a constraint
system when the classes and objdtismselvesare seen no longer dabelled graph structures
but aslogical constraints This is the purpose of the order-sorted feature constraint system we
summarize next, after we review some basic vocabulary.

§Attributive conceptual taxonomies —In the literature, the following words are often used inter-
changeably for the same category of symbal¢#ribute projection role, field, slot property feature
For us as well: any such symbol will denote a function—exae, which denotes a binary relation
(i.e, a set-valued function). So, without loss of generality, we shall call symbolsfeatures
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The following words are also often used interchangeably to mean roughathe thingtype
class sort kind, domain extension However, such is not the case in this presentation! Although
they all denote sets of values, there are important distinctisaswe use:

e “type”—for conventional programmingatatypes; viz.., types such as those used in most
popular programming languages sucllas a, C#, or C/C++, etc., ...

e ‘“class™—for types of objects,

e “sort”—for mathematical set-denoting symbols,

e “kind” —for types of types (as used in Type Theory),
e “domain”—for finite-domain or interval constraints,
e “extension™for the set of values populating a type.

In the Al literature, some also use the tefagoncept” to denote a set+e., a monadic relation.
We will too when we deal with Description Logic expressions as constraimtemphasize the
connection.

3.1 Order-sorted feature constraints

We recall briefly here the essentials of a constraint formalism for cdeed featured@SF)
objects and classes.

In (Ait-Kaci and Nasr, 1986)/-terms were proposed as flexible record structures for logic
programming. Indeed, we shall see tijaterms are a generalization of first-order terms. However,
-terms are of wider interest. Since first-order terms are the pervasigesttactures used by
symbolic programming languages, whether based on predicate or equistipnigthe more flexible
1-terms offer an interesting alternative as a formal data model for expgesemputation over
typed attributed objects using pattern-directed rules.

The easiest way to describe/aterm is with an example. Here isyaterm that may be used to
denote a generiper son object structure:

P :person(name = id(first = string,
last = S:string),
age = 30, (6)
spouse = person(nane = id(last = 5),
spouse = P)).

Namely, a 30 year-old person who has a name in which the first and lésgpaistrings, and whose
spouse is a person sharing his or her last name, that latter person&edpeing the first person in
guestion.

This expression looks like a record structure. Like a typical recordystfleld namesi e, the
symbols on the left o&. We call thesdeaturesymbols. In contrast with conventional records,
however)-terms can carry more information. Namely, the fields are attachgdrtsymbols é.9,
person,id,string, 30,etc). These sorts may indifferently denote individual valueg)( 30)
or sets of valuesd.g, per son, string). In fact, values are assimilated to singleton-denoting
sorts. Sorts are partially ordered so as to reflect set inclusignenpl oyee < per son means
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that allenpl oyees areper sons. Finally, sharing of structure can be expressed withiables
(e.g, P andS). This sharing may be circulae(g, P).

In what follows, we see how these terms may be interpreted as logical @iotsicalledDS F
constraints. More precisely;-terms correspond t@SF constraints in solved form. Next, we
define a simple constraint formalism for expressing, and reasoning witkdsattributed structures.
The reader may wish to consult Appendix Section B for needed formalnsotio

3.1.1 OSF ALGEBRAS
An OSF Signaturés given by(S, <, A, ) such that:

e Sis a set ofsortscontaining the sorts and L ;

e < is adecidable partial order @hsuch thatl is the least and is the greatest element;

e (S, <, A)is alower semilattices(A s’ is called the greatest common subsort ainds’);

e Fis a set offeature symbols

Referring to they-term example (6), the set of sofscontains set-denoting symbols such as
person,id, andstri ng. The set of feature§ contains function-denoting symbols—symbols
on the left of=—such asmane, nane, first, | ast, spouse, etc, ... The ordering on the
sortsS denotes set inclusion and the infimum operatiodenotes set intersection. Therefore,
denotes the all-inclusive sort (the set of all things), dndenotes the all-exclusive sort (the set of

no things). This is formalized next.
Given anOSF signature(S, <, A, F), anOSF algebrais a structure:

A= <Dm7 (8m>8637 (fm)f€f>
such that:

e D% is a non-empty set, called tlwmainof ;

e for each sort symbos in S, s% is a subset of the domain; in particular® = D* and
1% =;

o (s )%= s%n s for two sortss ands’ in S;

e for each featuref in F, fQ‘ is a total unary function from the domain into the domadie;,
fQl : D% — D%,

The essence of meaning-preserving mappings bet@&eF algebras is that they should respect
feature application and sort inclusion. Thus,@8F homomorphismy : 2 — B between two
OSF algebral and®B is a functiony : D* — D such that:

o 7(f*(d)) = fP(y(d)) foralld € D¥;
o v(s¥) Cs%.

The notion of interest for inheritance is that@fSF endomorphismThat is, when arfOSF
homomorphismy is internal to arOSF algebra [ e, 2l = B), itis called anOSF endomorphism
of (. This means:

o Vf € F,vd € D¥ ~(f*(d) = fH(v(d))
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e Vsc S, y(s*) Cs¥

As pictured in Figure 3, this definition captures formally and preciseheritance of attributes
as usedge.g, in object-oriented classes, semantic networks, and formal ontologidak|dgfin-
ing concept hierarchiesNamely, a concepf’; (the subconcept) inherits from a conceépt (its

f
S ’—\
f(s)
Y
Y
\
f
/

Figure 3:Property inheritance asOSF endomorphism

superconcept)f and only if there exists afDSF endormorphism taking the set denoted by the
superconcepf’; to the set denoted by the subconcépt

3.1.2 OSF TERMS

An OSF termt is an expression of the fornX : s(f; = t1,..., fn = t,)whereX is avariable
inV, sisasortins, fi,..., f, are features itF, n > 0, t,...,t, areOSF terms, and wher®
is a countably infinite set of variables.

Givenatermt = X : s(f1 = t1,..., fn = ty), the variableX is called itsroot variable and

sometimes referred to a&00T(¢). The set of all variables occurring inis defined avaARr (t) =
{ROOT(t)} Ui, VAR (;).

Given a termt as above, atOSF interpretation?(, and an?(-valuationa : V — D2, the
denotatiorof t is given by:

(™ = {aO)} 0s® 0 () B THIETR). (")

1<i<n
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Hence, for a fixed-valuationa, [t]* is either the empty set or the singleton §e{ROOT())}.

In fact, it is not the empty set if and only if the valug(ROOT(¢)) lies in the denotation of the sort
s, as well as each and every inverse image by the denotation of feataf¢he denotation of the
corresponding subteriit;]* under the san-valuationa. Thus, the denotation of adSF term

t for all possible valuations of the variables is given by the set:

1* = U e (8)
a:V— D2

Definition 3 (OSF Term Subsumption) Lett andt’ be twoOSF terms. Thent < ¢’ (“t is sub-
sumecbyt") if and only if, for all OSF algebras2, [t]* C [t']*.

An OSFtermt = X : s(fi = t1,..., fn = t,) is said to bein normal form” whenever all
the following properties hold:

s IS a non-bottom sort it%;

f1,---, fn are pairwise distinct features i, n > 0,
e t1,...,t, are allOSF terms innormalform,

no variable occurs inwith more than one nori- sort. That is, iftV occurs int both asV’ : s
andV : s', thens=Tors =T.

An OSF term in normal form is called &p-term.” We call ¥ the set of alk)-terms.

3.1.3 OSF CONSTRAINTS

A logical reading of arOSF term is immediate as its information content can be characterized by
a simple formula. For this purpose, we need a simple clausal language assfollo

An atomicOSF constraintis one of (1)X : s, (2) X = X/, or 3) X.f = X/, whereX and
X' are variables iV, s is a sort inS, andf is a feature inF. A (conjunctive)OSF constraintis a
conjunction (e, a set) of atomi@SF constraintsy, & ... & ¢,. Given anOSF algebra, an
OSF constrainty is satisfiablen 2, A, o |= ¢, if there exists a valuatioa : V — D* such that:

Aa = X:s iff a(X) e s
Aa = X=Y iff aX)=aY);

Aa = Xf=Y iff fAa(X))=aY) ©)
Wa E ¢ & ¢ iff Aa k= ¢ and A,a = ¢
We can always associate with &8 F termt = X : s(f1 = t1,..., fn = t,) acorrespond-
ing OSF constrainty(t) as follows:
ot) = X:s & Xfi=X1 & ... & X.fn=X, (10)
& o(t) & ... & olty)
where X;,..., X,, are the roots of,...,t,, respectively. We say that(¢) is obtained from

dissolvingthe OSF termt. It has been shown that the set-theoretic denotation @&t term
and the logical semantics of its dissolved form coincide exactl{+iKaci and Podelski, 1993):

[ 2 {a(X)]acvaL (@), Aa £ CF(X))

where C[X] is shorthand for the formul& = RooOT(t) & (t), and C;[X] abbreviates the
formula3var (t) C¢[X].
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3.1.4 OSF UNIFICATION
Definition 4 (SolvedOSF Constraints) An OSF constrainte is said to be insolved formif for
every variableX, ¢ contains:

e at most one sort constraint : s, with 1 < s; and,

e at most one feature constraiif. f = X’ for eachf;

e if X = X' € ¢, thenX does not appear anywhere elsegin

Again, given anOSF constrainty, non-deterministically applying any applicable rule among
the rules shown in Figure 4 until none apply will always terminate in the incamgisonstraint or
a solvedOSF constraint. Each of these rules can easily be shown to be correct. &hesiso
just easily be shown to be confluent modulo variable renaming. The ruleigwfe 4 are solution-

(O1) SORT INTERSECTION: P& X :s&X:§
P& X :sNs
(O3) |INCONSISTENT SORT: & X : L
XL
(O3) FEATURE FUNCTIONALITY : P& X.f=X'&X.f=X"

& Xf=X &X' = X"

(O4) VARIABLE ELIMINATION :
[ if X # X' and X € VAR(¢) |

P& X =X’
PIX/X & X = X'

(Os5) VARIABLE CLEANUP: p& X=X
¢

Figure 4:Basic OS F-constraint normalization rules

preserving, finite terminating, and confluent (modulo variable renaming)h&more, they always
result in a normal form that is either the inconsistent constraint ad@&tF constraint in solved
form (Ait-Kaci and Podelski, 1993). These rules are all we need to perfornmifieation of two
OSF terms. Namely, two terms, andte are OSF unifiable if and only if the normal form of
ROOT(t1) = ROOT(t2) & t1 & t2 isnot.L.

An OSF constraintp in solved form is always satisfiable in a canonical interpretatiore=
the OSF graph algebral (Ait-Kaci and Podelski, 1993). As a consequence (M&F-constraint
normalization rules yield a decision procedure for the satisfiabilit§SfF constraints.
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3.1.5 DISJUNCTION AND NEGATION

We now extend basi©®SF terms to express disjunctive and negative information. The syntax of
OSF terms is generalized as shown in Figure 5. We use the standard BNF graotaté&smwhere
‘[X] means ‘optional X", * X*' means ‘a sequence of zero or mo€’s”, and ‘X’ means ‘a
sequence of one or mofg’s.” Next, we explain what these new constructs mean and how they are
handled as constraints.

OSFTERM ::= |[VARIABLE :| TERM
TERM ::= CONJUNCTIVETERM
| DISJUNCTIVETERM

| NEGATIVETERM

CONJUNCTIVETERM ::= SORT|[( ATTRIBUTE' )]
ATTRIBUTE := FEATURE = OSFTERM
DISJUNCTIVETERM ::= { OSFTERM [; OSFTERM |* }
NEGATIVETERM := - OSFTERM

Figure 5:Extended OS F term syntax

$Disjunction — In Section 3.1.1, th€DSF sort signatureS is required to be a (lower) semilattice
with T and L. This means that a unigugLB exists for any pair of sorts. Yet, it is common to
find sort signatures for which this is not the case. For example, theigoatsre shown in Figure 6
violates this condition; therefore, it is not a semilattice.

@b'@

Figure 6:Example of a hon-semilattice sort signature

52



DATA MODELS AS CONSTRAINT SYSTEMS

However, since the ordering on sorts denotes set inclusion, sortmign denotes set intersec-
tion and is thesLB for the sort ordering. Therefore, by semantic duality, stisfunctiondenotes
set union and ighe least upper boun@ug) of two sorts. Hence, disjunctiveOSF term is an ex-
pression of the forrd¢;; . .. ;t,} wheren > 0, andt; is either a conjunctivé€SF term as defined
in Section 3.1.2 or again a disjuncti&SF term.

The denotation of a disjunctive term is simply the union of the denotations ofnitstitents.
Namely, given arOS.F interpretatior®l, and arf(-valuationa : V +— D*:

[t stad 1 = 0™ (11)
1<i<n
Thus, it follows from the interpretation of a disjuncti@®&SF term{t;...;t,} that, whenn = 0,
{} ~ L;and, whem =1, {t} ~t.
Similarly, a disjunctiveOSF constraintis a construct of the formb; || ... || ¢,, where the

¢;'s are either atomi®SF constraints, conjunctiv®SF constraints as defined in Section 3.1.3,
or again disjunctiveDSF constraints. Given a®SF algebra?l, a disjunctiveOSF constraint
¢ || ¢'is satisfiablen 2 iff either ¢ or ¢’ is satisfiable irkl. Namely,

Ua =6 | ¢ iff Wa = ¢ or La = ¢ (12)

The OS F-constraint normalization rules handling disjunction are given in Figureh&y Bimply

(Os) NON-UNIQUE GLB:

if s €max<{teS|t<s and t<s} o & X:s & X:5

i=1,...

VZ:Z 3 , ¢&(X:Sl ||HX577,)
(O;) DISTRIBUTIVITY : o & (¢ || ¢")

(0&¢) || (6&¢")

(Os) DISJUNCTION: ol
¢

Figure 7:Disjunctive OS F-constraint normalization

consist in non-deterministic branching in the direction of either of the disjuriRescall that all
our normalization rules work up to associativity, commutativity, and idempotehbeth the &
and || operators. Th&SF term-dissolving functiorp is extended to disjunctiv®S Ftermsby
transforming them into disjunctiv®@S F constraintsas follows:

e({ti;..5ta}) = @) | ... || ©(tn).

Note that we can as well extend the syntax28F terms by allowing disjunctive sorts where
sort symbols are expected. A disjunctive sort is of the f¢em .. . ; s, }, where thes;’s are either
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sort symbols inS or again disjunctive sorts. In this case:

<p(X s smt(fi = ti)?zl) o gp(X cs1(fi = ti)?zl) | (p(X ssm(fi = ti)?zl).

$Negation —We proceed similarly for negation. Namely, the denotation of the neg@& term
—t, given anOSF interpretatiorl and2-valuationa : V — D%, is defined by:

[t]™ = D¥\[e™. (13)
Accordingly, theOS F term-dissolving functiorp is extended by the equations shown in Fig. 8,
whereX’ is a new variable and; = ROOT (¢;) is the root variable of;, fori = 1,...,nandn > 0,
and: B
(X :d) if s=34,
(X:s) = (X :s1)& ... &s(X:sy) if s={s1;...;8n},
X:s otherwise

e(=(-t) = o
p(~{t1;. . 5ta}) = o(=t1) & ... & p(—tn)
(=X :s(fi = t),) = (X3 | XA=X &
| X=X & X]#X1 & o(th)
| Xofn =X, & ¢
| X.fo=X &

Figure 8:Negative OSF term dissolution

Thus, dissolving a negativ®SF constraint transforms it into a possibly disjuncti¢&s F
constraint where the symbot* no longer occurs, and atomic constraints are as before, but also
disequality constraintX’ # Y and complemented sort constraints of the foxm s, for X, Y € V
ands € S. The notatiors, for s € S, denotes theomplemenbf sorts; viz., 3% D¥\s2,

Satisfiability of the new atomi®SF disequalityconstraintX # X', for X € V, is defined as:

Wa = X #X iff a(X)#a(X). (14)

Because dissolution of a negatigZeS F term eliminates the negation symbef ‘altogether by
introducing complemented sorts and disequalities among variables, we needditional rules
for normalizing negativé®)SF constraints. They are given in Figure 9.

3.1.6 ADDITIONAL AXIOMS

The set ofOS F-constraints normalization rules presented thus far may be strengtheneaseith
ful additional axioms that enable important functionality commonly found in algjlass-based
systems—viz.., partial featureselement sortsand aggregatesWe next describe additional rules
that achieve such functionality while preserving confluence and finite tatmimwhen combined
with the previousDSF constraint-normalization rules.
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(Og) DISEQUALITY : P& X £ X

(O10) COMPLEMENT :

. & X :5
[ if s €emax<{teS|sZtandt £ s} |

p& X : s

Figure 9:Negative OS F-constraint normalization

$Partial features —Given a feature f, itslomainbom ( f) is the set of maximal sortgsy, ..., s, }
in S such thatf is defined—:e, boMm : F — 2°. A featuref such that ispom(f) = {T}is
said to betotal A feature f is nowhere defined wheneveom(f) = {L}. Itis partial when
it is not total although defined on some non bottom sort. Given a fedtureF, for each sort
s € boM(f), therangeof f in s is the sortRAN,(f) € S of values taken by featurg on sorts.
The OS F-constraint normalization rule for enforcing such partial features iwstas“Partial Fea-
ture” in Figure 10. Computational linguists, who have borrowed heavily from@§¢= formalism
to express HPSG grammars for natural-language processing, callitm arforced by this rule
“feature appropriateness” (Carpenter, 1991).

(O11) PARTIAL FEATURE:

p& X.f =X’

[ if s € poMm(f) and RAN.(f) =" ]
P& X f=X&X:5& X :5

(O12) WEAK EXTENSIONALITY :
[ifsegandeGARlTY(s):} P& X :s&X s
(Xf=yxf=yicoe G& X sk X = X'

(O13) VALUE AGGREGATION:

if s ands’ are both subsorts o P& X=ec:s& X=¢:4
commutative monoidx, 1,) d& X =exe :sAs

Figure 10:Additional OSF-constraint normalization rules

SElement sorts —A sort denotes a set. When this set is a singleton, the sort is assimilated to the
value contained in the denoted singleton. The normalization rules to do se falows.

Let £ (for “element or “ extensiongl sorts) be the set of sorts i that denote singletons.
Define thearity ARITY (e) of such an element soetgiving its feature arityas a set of features—
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ie, ARITY : & — 27. The setARITY (e) is the set of features that completely determine the
unique element of sod. In other words, whenever all features &RITY (¢) denote singletons,
then so doeg. All such values ought to be uniquely identified. Note in passing that all atomic
constants ir€ always have empty arity. For example, for any numberRITY (n) = 0. The
OS F-constraint normalization rule that enforces this uniqueness axiom on rlsors is called
“Weak Extensionality’as shown in Figure 10.

With this rule, for example, i& = {T, L,ni |l ,cons,li st ,nat,0,1,2,...} suchthahi |l <
list,cons < list,n < nat forn € N (where< is the subsort ordering). Lef =
{nil ,cons,n}, (n € N), such thatariTY (ni | ) = 0, ARITY (cons) = {head,tail }, and
ARITY (n) = () for n € N. Then, theOSF term:

X :cons(head = 1,tail = nil) & Y:cons(head = 1,tail = nil)
is normalized into:
X :cons(head = 1;tail =nil) & X=Y

This rule is calledweak” because it can only enforce uniquesaoyclicelements. Rules enforcing
the necessary stronger condition for cyclic terms can also be giveApgeEndix Section C).

$Relational features and aggregation The OSF formalism deals with functional features. How-
ever, relational features may also come handy. A relational feature isagybiglation or, equiva-
lently, a set-valued function. In other words, a multi-valued functional atiimmay be aggregated
into sets. Such a set-valued feature is call€tbée” or “property” in DL lingo (e.g, in OWL)—
see Section 3.2. Indeed, combining rul&ort Intersection”with “Feature Functionality’(see
Figure 4) enforces that a variable’s sort, and hence value, may omigrbputed by intersection of
consistent sorts. On the other hand, a relational feature denotesawssd-function, and normal-
ization must thus provide a means to aggregate mutually distinct values of sdme so

This semantics is easily accommodated with the following value aggregation thileh gen-
eralizes the'Sort Intersection’rule. Incidentally, computing sort intersection is doable in constant
time by encoding sorts as binary vectors as shown iittK&ci et al., 1989). This is a tremendous
source of efficiency when compared to an encoding of a class higtadrtial order using sym-
bolic FOL rules, as done in F-Logic for example (Kifer et al., 1995). The notatiomhfe atomic
constraint X : s” is generalized to carry an optional valaec £ (i.e, e is an extensional sort):
“X = e : s"”means ‘X has valuee of sorts"—where X € V,e € £, s € S. The shorthand
“X =¢"means X =e: T.” When the sork € S is a commutative monoitk, 1, ), the shorthand
“X:s"means’X =1, :s.”

The semantics conditions (9) are simply extended with:

Aa E X=c:siff *cs? and a(X) =% (15)

Now, recall that any monoid/ = (x,1,) is quasi-ordered with the-prefix relation <,. This
quasi-ordering (or preorder) is the natural approximation orderingeements of the monoid.
Thus, element values of a sort that denotes a commutative monoid may bessmmsing this
monoid’s operation. In particular, such a monoid operation may be thasef@nstructor—e.,
anassociative commutative idempotaranstructor.

Note that the'Value Aggregation’rule in Figure 10 is more general than need be for just accom-
modating sets. Indeed, it can accommodate other collection structuressslistis §ree monoid),
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multisets (commutative non-idempotent), or even other computed (as oppasettaucted) com-
mutative aggregation operations such as min, max, sum, progfact,.. Thus, one may use this
rule by USINQAGGREGATE (f, s, m, x, 1) to declare that featur¢ takes values in sort range
denoting a specific commutative mondid 1,) when f is applied on sors (i.e, s € bom(f) and
RAN,(f) = m). In other words,

X:s&Xf=Y &Y =1,:m. (16)

Then, Rule“Partial Featureused in conjunction with Rulévalue Aggregation”rule of Fig. 10
will work correctly.

Note also that we require@mmutativemonoid to ensure confluence of this rule with the other
OS F-constraint normalization rules in a non-deterministic normalization setting. br etbrds,
the order in which the rules are applied does not matter on the outcome ofgtegation. Hence,
thex operation on the two valuesande’ may then be defined as the appropriate aggregation. Thus
may elements be aggregated by constraint normalization into any suitable Bmst E.g, list,
set, multiset, sum, product, min, max, and,efg, ...). The notion of a monoid is all we need to
express very powerful aggregative data structures such asdheid comprehensiortslculus (Fe-
garas and Maier, 2000; Grust, 2003). Indeed tealculus can be simply and effectively extended
with the power of aggregative monoidal structuries.(lists, sets, multisets) and accumulataras.(
sum, product, min, maxetc.) using a simple notion ahonoid homomorphispwhich provides an
elegant formalism way to express declaratively iterative computation ggeegative constructs.

Decidability results concerning the differences between attributive pisiessing functional
featuresvs. relation roles are reviewed in (Schmidt-Schauld and Smolka, 1991). dagye has
also been considered in the same setting in (Baader and Sattler, 1997) withr diecildability
results. This last work offers intriguing potential connections with thedigna of declarative ag-
gregation as described in (Fegaras and Maier, 2000) or (Grust) 20@3e a versatile computable
algebraic theory of monoid comprehensions is defined in terms of monoid horpbisios allow-
ing the perspicous declarative descriptions of aggregates. The mamjptehension calculus is
a conservative extension of thecalculus and the object-relational model, and enjoys algebraic
properties that greatly facilitate query optimization.

§0Ontology unfolding — Description Logics support the notion tafrminology or TBox, which is a
means to define concepts in terms of other concepts (Baader and Nult, R0O&Ber words, a TBox
specifies equations defining non-primitive concepts in terms of basepsranad themselves, thus
allowing cyclic concept definitions. These may be viewed as recursivedgpations and may be
solved semantically and proof-theoretically depending on the nature @ffhene uses (A-Kaci,
1984, 1986; Bucheit et al., 1993; Baader and Nutt, 2003).

The OSF formalism offers a terminological facility also in the form of sort equationi-¢faci
et al., 1997). This is what we call@nceptual ontologgince it defines concepts. It may be viewed
as a schema abbreviating some sorts in terms of others. We restrict ositgedat equations of
the forms = ¢, wheres is a sort and is anOSF term, as forDL’s TBox definitions (Baader and
Nutt, 2003). More exactlypL does not us®SF terms butDL concept expressions, and it does
not deal with path equality constraints. We call such a “TBoxCa$\F theory

Clearly, expressivity of th@SF constraint calculus is greatly enhanced when sorts may be
recursively defined, especially when variables may appear in sonitaefs (Ait-Kaci et al., 1997;
Zajac, 1992; Krieger and Safer, 1994). A conceptual ontology is in fact very close to a class
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schema definition in object-oriented programming. Although in object-orientegtgmming, typ-
ically, classes and object do not enjoy the expressivity offered byrejtiterms orDL concept

expressions. Objects are made according to blueprints specified assirerclassdefinitions. A

class acts as a template, restricting the aspect of the objects that are itsasstahcs, a con-
venience for expressing conceptual ontologies in the forraaof definitionsis provided by the
OSF formalism, expanding in this way the capability of the basic and additiGd&F axioms of

Figures 4 and 10 to express more complex integrity constraints on objects.

This enables an incompletely specified object to remain always consisteritisvaliss as infor-
mation accrues about this object. A sort definition associateeam structure to a sort. Intuitively,
one may then see a sort as abreviationof a more complex structure. Hence, a sort definition
specifies a template that an object of this sort must abide by, whenevesiaog part of the struc-
ture appearing in the-term defining the sort.

For example, consider the-term:

person(name = T(last = string),
spouse = T(spouse = T,
nane = T(last = "Smith"))).

Without sort definitions, there is no reason to expect that this structaddsbe incomplete, or
inconsistent, as intended. Let us now define thegertson as an abbreviation of the structure:

P :person(name = id(first = string,
last = S:string),
spouse = person(name = id(last = 9),
spouse = P)).

This definition of the sorper son expresses the expectation whereby, wheneyara on object
has featuresane andspouse, these should lead to objects of sodt andper son, respectively.
Moreover, if the featureki r st andl ast are present in the object indicated bgne, then they
should be of sorst ri ng. Also, if aper son object had sufficient structure as to involve feature
pathsnane.l ast andspouse.nane.l ast, then these two paths should lead to the same object.
And so on.

For example, with this sort definition, thger son object with last namé Siri t h" above
should be made to comply with the definition template by beiognalizedinto the term:

X :person(nane = id(last = N:"Smith"),
spouse = person(spouse = X,
nanme = id(last = N))).

In this example, it is assumed, of course, th&tri t h" < stri ng.
Note that sort definitions are néature declarationdNamely, sort definitions do not enforce
the existence, or lack thereof, of the specified features that appeaar’'sedefinition for every
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object of that sort. This kind of consistency checking is performed bységnatures schema con-
straints enforced by rules such as tartial Feature’OS F-constraint normalization rule in Fig-
ure 10 using the declared domains and ranges of features. Rathefs @sfinition specifies sort
and equality constraints on feature paths from the sort being definedndtance, we could use
per son(hobby = novi e _goi ng) without worrying about violating the template fper son
since the featurbobby is not constrained by the sort definitionér son. However, it could be
further constrained by declaring featurebby 's domains and ranges.

This lazy inheritance of structural constraints from the class template intbjaat's structure
is invaluable for efficiency reasons. Indeed, if all the (possibly voluosheemplate structure of a
sort were to be systematically expanded into an object of this sort thabnlses tiny portion of it,
space and time would be wasted. More importantly, lazy inheritance is a waguoeetiermination
of consistency checking. For example, the sort definitiopef son above is recursive, as it
involves the sorper son in its body. Completely expanding these sorts into their templates would
go on for ever.

An incidental benefit of sort-unfolding in the context of a sort semilatticeliatwe callproof
memoizing Namely, once the definition of a sort for a variabfehas been unfolded, and the
attached constraints proven far, this proof is automatically and efficiently recorded by the ex-
panded sort. The accumulation of proofs corresponds exactly to tategtéower bound operation.
Besides the evident advantage of not having to repeat computations, thisizireg phenomenon
accommodates expressions that would loop otherwise.

Let us take a small example to illustrate this point. Lists can be specified by idgatarl
andcons to be subsorts of the sdri st and by defining for the sodons the template)-term
cons(head = T,tail = |ist). Now, consider the expressiox : [1|X], the circular list
containing the one element 1ke, desugared a¥ : cons(head = 1,tail = X). Verifying
that X is a list, since it is the ai | of acons, terminates immediately on the grounds thkahas
already been memoized to beans, andcons < | i st . In contrast, the semantically equivalent
Prolog program with two clauseki st ([]) andl i st ([H|T7]) : - |'i st (T") would make the goal
l'i st (X :[1|X]) loop. (See Sections 1.2 and 3.3.4.)

A formal and practical solution for the problem of checking the consigteha v)-term object
modulo a sort hierarchy of structural class templates is describediifkKéki et al., 1997). The
problem (called'OSF theory unification) is formalizable in First-Order LogicKOL): objects as
OSF constraint formulae, classes as axioms definin@& theory, class inheritance as testing
the satisfiability of anOSF constraint in a model of th&SF theory. As a result, models for
OSF theories may be shown to exist. It is shown irittKaci et al., 1997) that th&SF theory
unification problem is undecidable. However, checking the consistdrasy®@S F term modulo an
OSF theory is semi-decidable. This is achieved by constraint normalization eiéx§F theory
unification given in (At-Kaci et al., 1997), which is complete for detecting incompatibility of an
object with respect to a@SF theory;i.e., checking non-satisfiability of a constraint in a model of
the axioms. This system specifies the third Turing-complete calculus useé i (it-Kaci and
Podelski, 1993), besides its logical (Horn rules oyeterms) and the functional one (rewrite rules
overy-terms).

Remarkably, theDSF-theory constraint normalization rule system given irit{Raci et al.,
1997) enjoys an interesting property: it consists of a set of ten meangsgiping syntax-transfor-
mation rules that is partitioned into two complementary rule subsets: a systeneaiomfiuent and
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terminatingweakrules, and one additionatrongrule, whose addition to the other rules preserves
confluence, but may lead to non-termination. There are two nice consmzpief this property:

1. it yieldsa complete normalization strateggnsisting of repeatedly normalizing a term first
with the terminating rules, and then apply, if at all necessary, the tenth nde; a

2. it provides a formally correactompilation schemef OSF theories [ e., multiple-inheritance
constrained class hierarchies) by partial evaluation since all sorftaefsof a theory can be
normalized with respect to the theory itself using only the weak rules.

3.2 Description logic

Description Logic PL) is a formal language for describing simple sets of objects—calted
cepts—that are subsets of elements of a domain of interpretation, and propediesfth-called
roles—that are binary relations on this universe.

3.2.1 DL SYNTAX

DL’s syntax is defined by a grammar of expressionsciamcept descriptionsiaking up complex
concepts by combining simpler ones with operators denoting elementaryesatiops. As is the
case forOSF logic, there are many variations @£ languages-PL dialects—depending on
how expressive one needs to be; that is, what specific constructaipperted. This entails as
many computational and decidability properties enjoyed by (or plaguing)aheus expressivity
classes of such logical dialects. Which particd dialect one should be concerned with matters
only regarding the kinds of inferences one expects to be able to cariy inyand how inherently
expensive in time and space these are. The spédeffidialects we mention here and there in this
paper are simply for illustration. See (Heinsohn et al., 1994) for a théwreugrey and comparative
analysis of such dialects. The interested reader is also referred tp, 2206) and (Lambrix, 2006)
for a plethora of up-to-date information @nC literature and (re)sources.

Figure 11 gives grammar rules for a few populaL constructs that may be used to build
concept and role expressions. In the grammar of Figure 11, the nomgrsymbols ‘©NCEPT
and ‘RoLE’ derive respectively}conceptandrole expressions. The terminal symbbdkne’ is used
to stand for names of primitive concepts and roles, as well as constavitimalielements of some
domain of interpretation. Let [resp.,R] be the set of concept [resp. role] expressiéhgesp. R]
generated by this grammar.

In the following sections, we quickly overview a simple set-theoretic denotdteemantics
for DL constructs and a syntax-directed constraint-based deductive systesasoning wittDL
knowledge.

3.2.2 DL SEMANTICS

Let J be DL-interpretation structure with domain”, a (possibly countably infinite) set. Names of
constants denote atomic concepts.(subsets o), atomic roles {e., subsets o” x D7), or
individual elements itD”. Thus, letCNgre [resp..RName; Of, resp. INamre] be the subset ab?
[resp., the subset dP” x D7; or, the individual element if”] that the symboNane denotes.

Given a setS, the notationS| denotes the cardinality &f. Given setsA, B, andC, and two
binary relationsy C A x Bandg C B x C, theircompositionis the binary relatiomo 3 C Ax C
defined asovo 8 = {(z,y) € Ax C |3z € B, (z,2) € aand (z,y) € 8}.

60



DATA MODELS AS CONSTRAINT SYSTEMS

CONCEPT = T top concept
il bottom concept
Nane atomic concept
{Nan®,...,Nanme} concept extension

CONCEPTIM CONCEPT conjunctive concept
CoNcEePTLI CONCEPT disjunctive concept

—CONCEPT negative concept
VROLE.CONCEPT universal-role concept
JROLE.CONCEPT existential-role concept
< n.ROLE role max-cardinality concept
> n.ROLE role min-cardinality concept
RoOLE := Nane atomic role
| ROLEM ROLE conjunctive role
| ROLE e ROLE composite role

Figure 11:Syntax rules for commonDL concept and role constructs

Given a roleR anda, b in D7, whenevera, b) € [R]], we say that: is asubjectof b for R (or
an R-subjectof b), and we say thdi is anobjectof a for R (or an R-objectof a). Forz andy in
D?, we write R[z] to denote the set of alk-objects ofz, and R~1[y] the set of allR-subjects of;.
That s,

Vo e D? Rlz] = {ye D?|(z,y) € [RI{}, an
17
vye D’ R 'y = {z €D’ |(z,y) € [R]{}.

Note that for anyr andy in D7, and rolesR; and Ry, (R; e Ra)[r] = Ra[Ri[z]] and (R; e
Ro)'[yl = Ry'[R;'[y]], where,vS C D7, R[S] 2= |,.gRlz] andR'[S] =
Uyes R~'[y]. Note also that, by definitior(?; M R)[z] = Ri[z] N Ry[z]. Essentially, the set-
theoretic meaningC]? of a DL’s concept-description expressi6his a subset of the universe of
discourse, whose elements possibly verify simple conditions on the extérdaadinality of the
object sets of binary relations for which they are subjects. In the segaetjll simply write [_]”,

or even simplef_] rather than eithef_]7 or [_]7 for the semantic mappings whenever it is obvious
from the context which sub/super/script is meant.

The semantics oDL concept and role expressions is given by the semantic mappifigs
¢ — 2P and[_]? : R — 2P"*D” defined inductively as shown in Figure 12.

Depending on what concept and role constructs it has, a partiblawill have different ex-
pressivity and decidability results. In other words, expressivity oargDL depends on whether
its grammar has just a subset of, or all, the rules in Figure 11, or additioral-ee.g, for express-
ing so-calledrole-value mapsi.e., equality constraints among role composition. For example, the
system obtained by keeping all the rules in Figure 11 except for the ogerfaposite roles is called
ALCNR and has nice properties such as decidability of knowledge-base sditgfigucheit
etal., 1993; Donini et al., 1996). The convention for naming such logitstise a mnemonic letter
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Mg = D7
LB =

[Name]? = Enane
[[{Nanel,.. Naman}ﬂ {jNarrel,...,jNan'en}

[CinCa)? = [Ci]In[Ca)?
[CiuCy)? = [Ci]?U]Cy)?
[-Ci]7 = D)\[Ci]?

[VR.C]] = {zeD?|R[z]C [[C]]f}
[BRCI] = {zeD?|RE]IN[C]] #0}
[€n.R]] = {zeD’||R[z]]<n}
[>n.R]] = {zeD’||R[z]]>n}
[Nare]? = Rnane

[Ri M R]] = [[Rl]]:Ej N[Ra]?

[Rie Ry} = [Ril]o[Ra]?

Figure 12:Semantics of commorD L concept and role constructs

encoding trick for their names: they all start withZ (for Attributive Logic) and we add & if it
can express for universal roles, &rfor existential roles, & concept complementation, g for
role number restrictions, and & for role conjunction. Note that names are not unique per the
logic they denote. For examplelLC and ALEU are different names for the sarfieC. We prefer
using the shorter namese-g, ALC rather than the equivalemtLEU (Baader and Nutt, 2003).

Note that from the set-theoretic semantic€uf in Figure 12, one can derive several syntactic
congruence for thé L syntactic operators. Definin§ ~ S’ to mean[S] = [S'], it is easy
to show that all the syntactic equivalences shown in Figure 13 hold. fihereve shall always
implicitly consider all’DL syntactic constructs modulo these syntactic congruences. Figure 14
shows examples dPL concept expressions and their meaning. Other concept-forming ccisstru
may be defined in terms of more primitive ones. For example, it may sometimes cadhetbaise
the following syntactic shorthand role-cardinality notations:

shorthand ~» meaning

<n.R ~ =(>n.R),
>nR ~ =(<nR),
=n.R ~ (<n.R)MN(>n.R),
#n.R ~ (<n.R)U(>n.R).
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Figure 13:SomeDL syntactic congruences

Example

Meaning

Hurman M Mal e

Doct or LI Lawyer
=Mal e

{j ohn,mary}
vhasChi | d.Doct or
JhasChi | d.Laywer
< 1l.hasChild

> 2.hasChi | d

the set of all things that are humans and males
the set of all things that are doctors or lawyers
the set of all things that are not males

the Set{’Jj ohn>Jmary }

the set of all things, all of whose children are doctors
the set of all things, one of whose children is a lawyer
the set of all things that have at most one child

the set of all things that have at least two children

Figure 14:Examples of DL concept expressions
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3.2.3 DL KNOWLEDGE BASES

$Terminological vs. assertional knowledge -As mentioned before) £ knowledge [e., facts and
properties of the described universe), is represented by stbvihéprmulae in aknowledge base
which consists of two complementary partsteaminologicalknowldege base (oFBox) and an
assertionaknowldege base (0ABox). Informally, the TBox defines the concept and role vocabu-
lary and their hierarchical inheritance ordering, while the ABox is the aibeal data populating
the various sets and relations. This separation is akin to that of the inteihd@&iabase , or IDB,
from the extensional database, or EDB, in DatalogDIf), the TBox is the IDB and the ABox is
the EDB.

Figure 15 shows examples of terminological axioms and their meaning.

DL Syntax Example Meaning

Cy C Co Human C Bi ped M Ani nmal humans are biped animals

C1 =Cs Man = Hurmman M Mal e men, and only men, are humans and males

Chy E —(Cs Mal e C —Femal e males are not females

{z1} = {x2} {Ti m Berners-Lee} ={TBL} Ti m Berners-Lee andTBL are the same individual
{z1} = ~{z2} {TBL} =-{JesusChrist} TBL andJesusChri st are not the same individual
P CP hasDaughter C hasChild anything that has a daughter has also a child
Ph=P cost =price something has a cost iff it has also a price

P =Py hasChi | d = hasPar ent ~ something has a child iff that child has it as a parent
ptC P ancestort C ancestor one’s ancestor’s ancestor in also one’s ancestor

T C>1.P T C > 1.hasNane everything must have at least one name

Figure 15:Examples of terminological axioms

3.2.4 DL REASONING

Reasoning inDL is usually carried out based on Deductive Tableau methods (Schmidi#HScha
and Smolka, 1991; Bucheit et al., 1993; Donini et al., 1996; HorrookisRatel-Schneider, 1998;
Horrocks et al., 1999). For example, Figure 16 shows a system ofraorispropagation rules
for the ACLCN'R DL dialect (Bucheit et al., 1993). We call this constraint systefor Concept
constraint. These rules transform a sebf DL-constraints each of the form either (1): C,
(2) xRy, or (3) z # y, wherex,y are variables is some s®t C' is aDL-concept expression
and R is aDL-role expression of the forms shown in Figure 11. Given such & satvariable
r, and a role expressioR, we use the notatioRs[z] = {y | Ry € S}. For conjunctive
roles,(RM R')¢4[x] = Rg[z] N Ry[z], and for composite rolegR e k') [z] = {y |y €
RYz] for somez € Rg[z]}.

The semantics of such constraints is as follows. Giv&Cainterpretatiory and anJ-valuation

a:V— D%

J,a E x:C iff a(r)eC?;

Ja Eax#Fy iff alz) #ay); (18)
J,a = xRy iff (a(z),a(y)) € R,

Ja E S iff J,a = ¢ forallg € S.
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CONJUNCTIVE CONCEPT:

DISJUNCTIVE CONCEPT:

UNIVERSAL ROLE:

and y € Rsz]

if z:(VR.C) € S
and y:C ¢ S

EXISTENTIAL ROLE:

if 2:(3R.C) € S st. R =
and z:C € S=2z ¢ Rg[z]

and yis new

MIN CARDINALITY :

and |Rs[z]| #n

and y;isnew(0 <i <n)

MAX CARDINALITY :

if z:(<n.R) €S
and |Rs[z]| >n
and y,z € Rsz]
and y#z & S

if z:(CinCs) € S
and {z:C1,z:C2}Z S

if x2(01U02)ES
and z:C; ¢ S (1=1,2)

DEF

if z:(>nR) € S st R=

(I_Izil Ri)

S

SU{IZCl,LEZCQ}

SU{x:Cl}

SU{y:C}

S

(N, &)

SufzRiy}, U{y: C}

S

S U A{zRiy; 150 4
U {yi # yjhi<i<j<n

SUSly/z]

Figure 16:SomeDL-constraint propagation rules (ALCN'R)
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3.3 Examples

We now illustrate how th&SF andDL formalisms may be used with tECP scheme as data
description languages on which computational rules may be specified.

3.3.1 HERBRAND TERM UNIFICATION ASOSF CONSTRAINT SOLVING

We can recast unification of Herbrand and rational terms as an instarif@¢§ 86 constraint solv-
ing. In other words, what was covered in Section 2.3.2 using variable&abstitutions can be
generalized to the problem of normalizing @& F constraint corresponding to the labelled-graph
representation of terms. This has the nice consequence of simplifyingrthalfpresentation as
well since it does not need nor use cumbersome term substitutions anddimgiositions. Most
importantly, the main benefit is a finer grain setting than offered by the Hetliemm unification
algorithm of Figure 2. This allows more commutation flexibility between constraivirggy and
rule resolving. Keeping in mind the chemical metaphor, one may think that the etereentary
the ions in the agueous solution the easier they are to move and react.

Clearly, a first-order rational term ifi, )y can be viewed as a particul@rterm. For this, it
suffices to take&s = X U {T, L} andF = N*. Namely, function symbols i = | J,,., X, denote
singleton sortsi(e., they are mutually incomparable except thidte X, 1 < f < T), and numbers
as features. Thus, the terfiity, ..., t,) is they-term f(1 = t1,...,n = t,). The features here
are simplyargument positionand are interpreted in th@SF formalism asprojection functions
Additional axioms are needed to enforce arity constraints. Namely:

ARITY (T) =10 (19)
ARITY (L) ={i e N* | i <max{n > 0] %, # 0}} (20)
VieX,: ARITY(f)={1,...,n} (21)
Vie F: pom(i) =[], (22)
i<n

T if f e boM(3),

Vie F.Vfe€X: RANg(i) = { 1 otherwise

(23)

Condition (19) states that has empty arity. This corresponds to the fact that logical variables
may appear only as term leaves. Condition (20) stateslthas the maximal arity of all symbols.
Condition (21) declares the arity for each function symbol. Condition (22)ades the domains
for each argument position—namely, the set of symbols that have at l@ashdmy arguments.
Condition (23) enforces the domains and ranges declared in the sigfatdtanction symbols
according to their arity constraints.

For sorted algebras, the sort signatfinmay also contain non-minimal sorts above the singleton-
denoting function symbols &f. Thus, multi- or order-sorted versions of free term algehrg are
readily expressible in th&®SF formalism by making Condition (23) involve non-singleton sorts
other thanT as the range of projection features. With these signature constraint®ah/ Fea-
ture” rule of Figure 10 combined with the bagizSF rules of Figure 4 will make unification of
(rational) Herbrand terms behave as expected. neorrationalterms, one must also perform an
“occurs-check’test in the*Variable Elimination”rule.
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3.3.2 RULES OVER OBJECTS

Rules over typed attributed objects with class inheritance such as typicatlyrupepular object-
oriented programming languages suchlasa, C#, or C/C++, fit perfectly theOSF formalism
with sort definitions such as used ini{Aaci and Nasr, 1986) where a basic integratio &f with
feature-term inheritance is described. Logln was, to our knowledgdirthh proposal motivated by
using order-sorted feature term inheritance as constraints in logicgmnoging. The motivation
behind its design was that whétypes” (or “sorts”) form a lower semi-latticeife., a partial order
with greatest lower boundsGLB’s), unification of labelled graphs modulo this order is the key
to achieving a better focus on relevant goals by pruning out relationstbgemoting constraints.
Indeed, Logln is easily characterized a8&P language based on tli&SF constraint system.
Clearly, this paradigm is directly amenable for specifying rules desra-style object-oriented
data models. Take for example the simple multiple-inheritance class-interfaeechie of Fig-
ure 17. Each class interface name corresponds to a sort. The deakuattieigure 17 define the

interface AdultPerson {
Nane i d;
Dat e dob;
int age;
String ssn;
}
interface Enpl oyee extends AdultPerson {
Title position;
String institution;
Enpl oyee supervi sor;
int salary;
}
interface Marri edPerson extends AdultPerson {
Marri edPer son spouse;

}

interface MarriedEnpl oyee extends Enpl oyee, MarriedPerson {
}

interface R chEnpl oyee extends Enpl oyee {

}

Figure 17:Example of aJava multiple-inheritance class-interface hierarchy

sort partial order given in Figure 18.

It is not difficult to see thaDSF term unification or entailment can thus accommodate rules
using unification or pattern-matching over such objects.

This approach, exemplified by LogIn tAKaci and Nasr, 1986), has had several descendants,
most notably LIFE (At-Kaci, 1993; At-Kaci et al., 1994a), but it also inspired many natural-
language processing\(£P) formalisms based on pu®SF term constraints such as Nora (Fis-
cher, 1993), or augmented with relational dependencies such as $Jddfe @nd Seiffert, 1991),
itself fully expressed in the spirit of thedhfeld-SmolkaCLP scheme. One may indeed see the
LoglIn family of languages (which includes LIFE) &£P(0O) languages. Strictly speaking, the
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Adul t Per son

Enpl oyee

Ri chEnpl oyee Marri edEnpl oyee

Figure 18:Partial sort order for the Java hierarchy of Figure 17

Logln language as described ini{A<aci and Nasr, 1986) only includes the rules of Figures 4
and 7, as well as the rules for sort definitions described iit+iKaci et al., 1997), although with-
out variables in sort definitions—which mak@s$ F unification modulo sort definitions decidable.
LIFE (Ait-Kaci, 1993) extends Logln with interpreted functions o¢&$ F terms, as well as with
sort definitions with variables and relational conditions—See Section 3.3.4.

Clearly, non-logical rules systems such as those based on condition/pobidaction rules
typically used in experts systems using object pattern-matching (as opjpaseification) can also
be expressed usin@S Fconstraint entailment (as opposed to constraint conjunction).

3.3.3 HORN RULES OVER DESCRIPTION LOGIC CONCEPTS

Definite clauses over constraint systems implementing the semantics of any tiatee family
DL languages have been proposed. Examples of such systems are Clld¥iNahd Rousset,
1998), andAL-log (Donini et al., 1998). Both are logic-programming languages thdbixpe
description logicALCNR (Bucheit et al., 1993; Donini et al., 1996). CARIN is less restrictive
than AL-log. In fact, both works fit fully the approach we preconize here @ugeCARIN €
CLP(C)). However, although they present an interesting marriagP Ofwith definite clauses,
neither make explicit the link with th€£LP scheme nor, therefore, do they stress the free model-
theoretic semantics thereby inherited.

More seriously, CARIN’s designers seem to have an incorrect gtateting of the)SF for-
malism and how it relates tBLs. In particular, in (Levy and Rousset, 1996), one can read:

“-terms [...] differ from description logics in several sifigant ways. [...] they are more
limited [. .. ] since they can only allow functional roles [].For example, number restrictions
and existential statements that are standard in desgarifotiics are not expressibleinterms.”

However, these (unsubstantiated) statements are patently incorrectoarah as clearly shown in
Section 4.2.

3.3.4 ORDERED SORTS AS PROOF MEMOIZING

The basicOS F-unification rules of Figure 4 may be viewed as proof rules for proving adan
predicatesi(e., X : s is consistent iffs(X) is true), functional dependenciese(, X.f = Y is
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consistent iffY’ = f(X)), and equality fe., X = Y is consistent iffX = Y’). It may thus be
argued that any logic reasoner may do the job of providing a satisfaghenational semantics to
such constraints. This is not so, however, si&F -unification proves sort constraints by reducing
them monotonically w.r.t. the sort ordering. This means that wXiers has been proven, the proof
of s(X) is recorded aghe sorts itselfl. Indeed, if further down a proof, it is again needed to prove
X : s, the process simply remembers it simply by lookingkds binding. This, however, would
not be the case in a basic relational setting such as Prolog where hagirenmoals(X) is not
remembered in any manner.

Note that a subtle but wonderful consequence of this proof memoizingmofOS F-style
unification arises when relational rules are also used in the body of efimitibn. Indeed, clearly
the integration Rules/Ontology may be used as well symmetrically as Ontology/Rulegher
words, while ontological constraints may be used for inference and cotiguultgy rules, rules may
in turn be used to enhance the expressive power of ontologies by alloglatgpnal conditions to
sort definitions as done in LIFE {AKaci, 1993).

Let us briefly illutrate on an example how this works, and why this is invaludlgieus consider
again the sort hierarchy of Figure 18. LIFE also uses interpretedifunsc(Ait-Kaci et al., 1994a;
Ait-Kaci and Podelski, 1994). For example, we assume here that the fulagiel nYear s in
Figure 19 is a function that takes Aadul t Per son object and returns its age in number of years
from itsdob feature and the current date-¢;, it is of type Adul t Per son — i nt and could be
defined ase.g, agel nYear s(A : Adul t Person) — current Year — A.dob.year . This
sort hierarchy defines recursive sorts and attaches relationaitioosdo each. The inheritance
scheme means that a sort’s features, equations thereof, as well ase¢latiostraints are passed
down to subsorts. If we label every sort definition’s conditions with theimaksort they restrict by
using a notation such &or t #(condi ti on), then it is a simple matter to implement relational-
proof memoizing as follows. In LIFE, equations involving interpreted fumgjsuch ast, *, <,
>, that miss some information are suspended until such information materializesreomplete
function callsresiduate In particular, the feature-projection function applied to a non-feature
expression residuates on its second argumegt, (Y in the constraintX.Y = Z, whereX, X,
andZ are variables). That is, it waits until its second argument evaluates tcstacbthat denotes
a feature name. For example, the constraint” = Z will wait for the feature argument until
Y gets bound to, say,00, at which point the constraint is “awakened” afdgets then bound
to T(foo = Z). Obviously, this works also when projecting on any functional expressiat
eventually evaluates to a feature name.

Let's say that we prove the following sequence&t$ F constraints:

1. X :adul t Per son(age = 25),

2. X : enpl oyee,

3. X :marriedPerson(spouse = Y).
First, we proveX : adul t Per son and establish the conditiadul t Per son#(X.age > 18).
Note that, if this succeedsX gets bound to a term with root scadul t Per son where all
the features leading to a variable in the constraint are materialized. As weegrdo proving
X : enpl oyee, since we have already proven that thge was correct, there is no need to

do so again. This is achieved by proving only the conditions imposedng oyee that are
tagged by a subsort einpl oyee; namely,enpl oyee#(hi gher Rank(E.posi ti on, P)) and
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P :adul t Per son ( id= nane
, dob = date
, age = A:int
, Ssn = string

)
| A=agelnYears(P), A>18.

enpl oyee <: adul t Per son.
enpl oyee ( position = T:title
, institution = string
, supervisor = FE:enployee
, salary = S:int

| hi gher Rank(E.position,T), E.salary > S.

mar ri edPer son <: adul t Per son.
M :marriedPerson ( spouse = P:marriedPerson )
| P.spouse = M.

mar r i edEnpl oyee <: enpl oyee.
mar ri edEnpl oyee <: marri edPer son.

ri chEnpl oyee <: enpl oyee.
R :richEnpl oyee ( institution =1
, salary = S

)
| stockVal ue(I) =V , hasShares(R,I,N), S+ N xV > 200000.

Figure 19:A relationally constrained LIFE sort hierarchy for the classes in Figure 17
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enpl oyee#(FE.sal ary > S). Next, we proceed to proving : mar r i edPer son(spouse =
Y). However, we already proved : enpl oyee. Thus, by sort intersection, we must prove
X :marri edEnpl oyee(spouse = Y). Hence, onlyrar ri edPer son#(Y.spouse = X)
needs to be established. All other inherited conditions having a sort |edsgteg thamar r i ed-
Empl oyee—such aenpl oyee—can therefore be safely ignored.

Clearly, this method allowsever to prove more than once any relational conditestricting
a sort definition. This property seems to have been overlooked by msegrolers who consider
that theOSF formalism is, like theD L formalism, just a peculiar notational variant of a subset of
FOL.

4. Relation betweenOSF and DL formalisms

Description Logic DL) and Order-Sorted Featur®§F) logic are two mathematical formalisms
that possess proof-theories based on a constraint formalism. Botlirece dbscendants of Ron
Brachman’s original ideas (Brachman, 1977). This inheritance goeaghrmy own early work
formalizing Brachman’s ideas {&Kaci, 1984), which in turn inspired the work of Gert Smolka,
who pioneered the use of constraitigth for the DL (Schmidt-Schaul? and Smolka, 19%)d
OSF (Smolka, 1988) formalisms. While tH2L approach has become the mainstream of research
on the semantic web, the lesser kno®& F formalisms have evolved out of Unification Theory
(Schmidt-Schaul? and Siekmann, 1988), and been used in constrainpdogiamming and com-
putational linguistics (Brre and Rounds, 1990; Emele and Zajac, 1990yr®and Seiffert, 1991,
Emele, June 1991; Zajac, 1991; Emele and Zajac, 1992; Smolka, 1922, 2992; Carpenter,
1992; Ait-Kaci, 1993; Fischer, 1993;i&Kaci and Podelski, 1993; ikKaci et al., 1994a; Smolka
and Treinen, 1994; Treinen, 1997 llfer et al., 2000, 2001).

Both formalisms were introduced for describing attributed typed objectss, Th8.F andDL
have several common, as well as distinguishing, aspects. Thanks todootalifms using the
common language gFOL for expressing semantics, they may thus be easily compared—see, for
example, (Nebel and Smolka, 1990, 1991). We here brush on somiiakgeints of comparison
and contrast.

4.1 Common aspects

DL reasoning is generally carried out using (variations on) Deductivéedalmethods (Manna
and Waldinger, 1991). This is also the case of the constraint propagatésof Figure 16, which
simply mimick a Deductive Tableau decision procedure (Donini et al., 1996)F reasoning is
done by theDSF-constraint normalization rules of Figures 4 and 10, which implement a logic of
sorted-feature equality.

$Object descriptions —Both theDL£ and OSF formalisms describe typed attributed objects. In
each, objects are data structures described by combining set-denataegptand relation-denoting
roles.

$Logic-based semantics -Both DL andOS.F logic are syntatic formalisms expressing meaning
using conventional logic styles. In other words, both formalisms take theinimg@ a common
universal language-z., (elementary) Set Theory. This is good since it eases understandihg ea
formalism in relation to the other thanks to their denotations in the common language.
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§Proof-theoretic semantics -Both DL and OSF logics have their corresponding proof theory.
Indeed, since both formalisms are syntactic variants of fragmenf(®f, proving theorems in
each can always rely aAO L mechanized theorem proving.

§Constraint-based formalisms —Even further, bottD£ andOS F logic are operationalized using a
constraint-based decision procedure. As we have expounded, thés inath paradigms amenable
to being manipulated by rule-based systems such as basédBnrewrite rules, or production
rules.

$Concept definitions -Both DL andOSF provide a means for defining concepts in terms of other
concepts. This enables a rich framework for expressing recurateestiuctures.

4.2 Distinguishing aspects

There are also aspects in each that distinguisitteand OSF formalisms apart. However, sev-
eral of these distinguishing features are in fact cosmeties—are simply equivalent notation for
the same meaning. Remaining non-cosmetic differences are related to thee ofatue deductive
processes enabled out by each formalism.

$Functional featuresvs.relational roles —The OSF formalism usegunctionsto denote attributes
while theDL formalism usesinary relationsfor the same purpose. Many have argued that this
difference is fundamental and restricts the expressivitp8tF vs. DL. This, however, is only a
cosmetic difference as we have already explained. First of all, a fun¢tiod — B is a binary
relation sincef € A x B. It a functional relation because it obeys the axiom of functionality;
namely,

(a,b) € f& (a, b)) e f = b=V (24)

In other words, a function is a binary relation that associates at mostamge relement to any
domain element. This axiom is fundamental as it is is used in KASIE unification “Feature
Functionality” shown in Figure 4. Indeed, the correctness of this rule relies on the semah
features as functions, not as relations.

However, a relatiorkR € A x B is equivalent to either of a pair of set-denoting functiongz-,
either the functior?[_] : A — 25, returning theR-object(or R-imagé setR[x] C B of an element
x € A; or, dually, the functionrR~'[_] : B — 24, returning theR-subject(or R-antecedentset
R~'[y] C A of an elemeny € B—see Equations (17). Indeed, the following statements (1)—(3)
are equivalent:

Y(z,y) € AxB, (1) (z,y) € R iff (2) yeR[z] iff (3) zeRy.

Therefore, it is a simple matter for t@SF formalism to express relational attributes (or roles)
with features taking values as sets. This is trivially done as a special t#se ‘value Aggrega-
tion” OSF unification rule shown in Figure 10, using a set data constructe;-a commutative
idempotent monoid.

§Setsvs. individuals — Because th&)SF formalism has only set-denoting sorts, it is often mis-
construed as unable to deal with individual elements of these sets. Hpwewexplained in Sec-
tion 3.1.6, this is again an innocuous cosmetic difference since elements ahg agsimilated to
singleton-denoting sorts.

$No number restrictions vs. Number restrictions — Strictly speaking, thé)SF formalism has no
special constructs for number restrictions as they exigtin Now, this does not mean that it lacks
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the power to enforce such constraints. Before we show how this maynee kdowever, it important
to realize that it may not always be a good idea to usé€tieapproach to do so.

Indeed, as can be seen in Figure 16, ‘tWén Cardinality” rule (C<) will introducen(n —1)/2
new disequality constraints for each such constraint of cardinaliGlearly, this is a source of gross
inefficiency an increases. Similarly, th&Existential Role”rule (C5) will systematically introduce
a new variable for a roleeven when this role is never accesséidioes so because, it materializes
the full extent of role value sets. In other wordsgonstraint-propagation rules flesh out complete
skeletons for attributed data structures whether or not the actual attréduts\are needed.

By contrast, it is simple and efficient to accommodate cardinality constraints i@ $S¥€ cal-
culus with value aggregation using a set construdter, &n idempotent commutative monaid =
(%, 1,)), and a functiorcARD : M — N that returns the number of elements in a set. Then, impos-
ing a role cardinality constraint for arotén afeatureterm = X : s(r = S = {e1,..., ey} :m),
where sortm denotesM’s domain, is achieved by the constraipft) & CARD(S) < n—or
o(t) & CARD(S) > n. If the set contains variables, these constraints will residuate as needed
pending the complete evaluation of the functiomrRD. However, as soon as enough non-variable
elements have materialized in the set that enable the decision, the constralg dully enforced.
Clearly, this “lazy” approach saves the time and space wasté&bpropagation rules, while fully
enforcing the needed cardinalities.

Incidentally, note also that this principle allows not only min and max cardinalityaby con-
straints on a set, whether cardinality or otherwise. Importantly, this forggogthod works not
only for sets, but can be used with arbitrary aggregations using otheridsono

$Greatest fix point vs. least fix point — It is well known that unfolding recursive definitions of
all kinds (be it function, relation, or sort) is precisely formalized as compudifix point in some
information-theoretic lattice. Recall that a function between two orderedfsets, <— A’, <’ is
monotone iff and only iVz,y € A, * <y = f(z) <' f(y). Recall also that, given a complete
lattice ¢ = (D, C *,n* % T L% and a monotone functiofF : D — D<, Tarski's
fix-point theorem states that the set(F) = {x € D*| F(x) = x} of fix points of F is itself a
complete sublattice of (Birkhoff, 1979). Moreover, its bottom element is call& least fix point

(LFP), writtenF', defined by Equation (25):

Fo= | s (25)

neN

and its top element is calleB’s greatest fix pointGFP), writtenF, defined by Equation (26):

FLo= ey (26)

neN

where:
x if n=0,
Filw) = { F(FY(x)) otherwise

Informally, 7' is the upwarditerative limit of 7 starting from the least element n*, while F!

is its downwarditerative limit starting from the greatest elementZit. One can easily show that
F(F" = F [resp.,F(F') = F4, and that no element dD* lesser tharF' [resp., greater than
F!1is afix point of F.
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One may wonder when one, or the other, kind of fix point captures thergemintended for
a set of recursive definitions. Intuitively, LFP semantics is appropridtervinference proceeds
by deriving necessary consequendesm facts that hold true, and GFP semantics is appropriate
when inference proceeds by deriviadfficient conditiondor facts to hold true. One might also say
that LFP isdeductivesince it moves from premiss to consequent, and that GEBdsictivesince
it moves from consequent to premiss. Therefore, LFP computation caal moly well-founded
(i.e., terminating) recursion, while GFP computation can also model non well-&mliGic., not
necessarily terminating) recursion. Hence, typically, LFP computation isatigtdescribed as a
bottom-upprocess, while GFP computation is naturally describedtap-alownprocess.

An example of LFP semantics is given by the semanti¢s® relations defined in Equations 2,
while an example of GFP semantics is given by the non-determiigife resolution process de-
scribed in Equations 3-5. Indeed, the former proceeds bottom-up, whilatthr goes top-down.
Note that, in this case, the two fix points coincide. Such is not necessarilpsledrcgeneral.

Another example of GFP semantics is given by the unification algorithm of &igur In-
deed, unification transforms a set of equations into an equivalent amg sigficient conditions
by processing the terms top-down from roots to leaves. The problend pede find sufficient
conditions for a term equation to hold on the constituengs, the subterms) of both sides of the
equation. For first-order terms, this process converges to either falym®ducing a most general
sufficient condition in the form of a variable substitution, or equation setlires form (the MGU).
Similarly, theOS F-constraint normalization rules of Figures 4, 7, 9, and 10 also form ampbe
of converging GFP computation for the same reasons. Yet another exafpleP computation
where the process may diverge is the lazy recursive sort definitiartding described in (K-Kaci
etal., 1997).

On the other hand, constraint-propagation rules based on Deduchiealiamnethods such as
used in (Schmidt-Schaufld and Smolka, 1991) or shown in Figure 16 aredmputations. In-
deed, they proceed bottom-up by building larger and larger constrastgecompleting them
with additional (and often redundant) constraints. In sh@&,F-constraint normalization follows
a reductive semantics (it eliminates constraints) whilg-constraint propagation follows an infla-
tionary semantics (it introduces constraints). As a requll's tableau-style reasoning method is
expansive—therefore, expensive in time and space. One can easilyissimply by realizing that
each rule in Figure 16 builds a larger seas it keeps adding more constraints and more variables
to S. Only the “Max Cardinality” rule (C<) may reduce the size & to enforce upper limits on
a concept’s extent’s size by merging two variables. Finally, it requiresthigatonstraint-solving
process be decidable.

By contrast, theDSF labelled-graph unification-style reasoning method is more efficient both
in time and space. Moreover, it can accommodate semi-decidaldewndecidable, though recur-
sively enumerable—constraint-solving. Indeed, no rule in Figures @, a&nd 10 ever introduces
a new variable. Moreover, all the rules in Figure 4 as well as the rulexu@pe for the“Partial
Feature”rule, all eliminate constraints. Even this latter rule introduces no more corstthan
the number of features in the whole constraint. The rules in Figures 7 and/ 9eplace some
constraints with more constraints, but the introduced constraints are allrestrietive than those
eliminated.

$Coinduction vs. induction — Remarkably, the interesting duality between least and greatest fix-
point computations is in fact equivalent to another fundamental one; naimeltion vs. coinduc-
tion in computation and logic, as nicely explained in (Sangiorgi, 2004). Indebie induction
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allows to derive a whole entity from its constituents, coinduction allows to eé¢hg constituents
from the whole. Thus, least fix-point computation is induction, while grééitepoint computation
is coinduction. Indeed, coinduction is invaluable for reasoning abountwell-founded compu-
tations such as those carried out on potentially infinite data structures|(A@88), or (possibly
infinite) process bisimulation (Baeten and Weijland, 1990).

This is a fundamental difference betwePf and OSF formalisms: DL reasoning proceeds
by actually building a model's domain verifying a TBox, whif&SF reasoning proceeds by elim-
inating impossible values from the domains. Interestingly, this was alreadysad in (Schmidt-
Schaul3 and Smolka, 1991) where the authors state:

“[...] approaches using feature terms as constraints [us¢ a lazy classification and can
thus tolerate undecidable subproblems by postponing tbiside until further information is
available. [...these] approaches are restricted to fedtums; however, an extension to KL-
ONE-like concept terms appears possible.”

Indeed, the extende®SF formalism we have overviewed in this article is a means to achieve
precisely this.

5. Conclusion

We have shown how constraint logic programming offers an invaluableagtisn mechanism for
“integrating” correctly, seamlessly, and—to boot!'—operationally, rulsebaprogrammingé.g,
definite-clause logic programming) with data description logics. Seen amalfoonstraint system,
the data model is thus abstracted from the rule model. In order to demonstnatiedt £LP scheme
hinges on the fact that the rule dimension and the data model dimensiomntiaogonal we have
illustrated this paradigm by formulating foltP languages, namely Datalog, Prolog, LIFE, and
CARIN, as members of th€LP language familyCLP(A), whereA = D, H,O,C. Indeed,
one may conjugate any formal rule-based systeey fiot only Horn-based) with any data model
as long as the latter may be expressed using constraints. This indepemieperty leads to a
clear separation of concerns and great benefits either regardirertrass (due to clean formal
semantics otonstraint entailment as pattern matchangd constraint conjunction as unificatign
or implementation (due to efficient dedicated constraint-solving algorithmshaéealso reviewed
two well-known data description formalisms based on constraints, Ord&reSeeature Logic and
Description Logic, explicating how they work and how they are formally relate

Clearly, constraints are the right medium for expressing symbolic or numi@téc or mixtures
of both. For example, as shown by the pioneering work of the late Parislld&is onConstraint
Databasene may use relational rules acting on non-symbolic, or hybrid, data asdagr&phical
Information System (GIS) where cartographic data may be describgeédayetric constraints
the form, e.g, of linear inequalities delineating map areas as convex polygons (Kanedla#is
Goldin, 1994; Brodsky, 1996), for which Mathematical Programming tiegles used in Operations
Research may be used. In addition, the algebraic properties of cohateappropriate for making
different constraint systems cooperate by helping one another whhariregolation may not have
enough information to proceed to a solutiorittKaci et al., 2007, 2006).

Easing rule interoperability is yet another substantial benefit of the “datoastraint” ap-
proach. Indeed, constraints are the right level of abstraction foimidechange because they allow
approximation Approximation is important for exchange as one may still wish to excharigs ru
at some level okbstractionlIf data is assimilated to constraints then abstraction is possible simply
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by relaxing some constraints describing the data over which the rulesfaredi€erhis is precisely
the method used in (i#xKaci et al., 2007, 2006) for the verification of production rules bytraics
interpretation over constraints.

Finally, the most obvious benefit of seeing data description as constrathizgt i simplifies
things at both the theoretical and practical level. It is a rare happeningdnriation science
that such be the case for it not to be of some welcome convenience. Thenmosdiate is the
perspicuous expression of rule-based computation and inferenceamiaus data models. For this
reason, it may be of importance for facilitating some of the advertized obgsati/the semantic-
web effort.

We hope that this article will spur the reader’s interest in pursuing someedatldas we have
discussed.
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Appendix
Appendix A. Herbrand terms and substitutions

Let {X,, }»>0 be an indexed family of mutually disjoint sets of (function) symbols of atityLet
¥ = U,,>o Zn be the set of all function symbols.If we assubig+# () ground Herbrand terms will
befinite trees—i.e., wherein all path are finite and lead from the root to the leaves. Thestusts
are calledinductive as they embody computation from the leaves to the root. On the other hand,
rational termdor regular graphs) do not have these restrictions: paths in a ratiomahtay be of
infinite length, although the number of its subterms is itself finite. Prolog lltismal terms are an
example Colmerauer (1990). Other examplescaieductivestructures used in so-called non-strict
programming languagese-g, lazy lists and trees.

Let 7y, be the set ofjround termglefined as the smallest set such that:

o if a € ¥ythena € Tx;
® |f f S En andti S 7—27 (1 S { S n)’ thenf(tl" o ’tn) € TE'

LetV be a countably infinite set afariables By convention, variables will be capitalized not to
confuse them with constants }y,.

The set offirst-order (Herbrand) termis written 7y, ,, and is defined as the smallest set such
that:

o if X € VthenX € TEJ};
o if a € ¥y thena € Ty y;
o if feX,andt; € Txy, (1 <i<n), thenf(ti,...,t,) € Ix y.

We shall write simplyZ” instead of7s, ,, omitting the symbol signature and set of variables when
implicit.

For example, given the signatu¥esuch thaip € X3, h € 3o, f € 31, anda € ¥, and given
thatW, X, Y, andZ are variables i, the term(Z, h(Z, W), f(W)) andp(f(X), h(Y, f(a)),Y)
arein7.

A substitutionis a finitely non-identical assignment of terms to variables; a functiono from
VY to 7 such that the sefX € V | X # o(X)} is finite. This set is called thdomainof ¢ and
denoted bypom (o). Such a substitution is also written as a set such as {t;/X;}? ; where
DOM(o) = {X;}I*, ando(X;) = t; fori = 1 ton.

A substitutiono is uniquely extended to a functi@ghfrom 7 to 7 as follows:

e 7(X)=0(X),if X eV,
e g(a) =a,if a € Xo;
o 7(f(tr,...,tn)) = f(@(t1),...,0(tn)), if fE€X,, t; €T, (1 <i<n).

Since they coincide o, and for notation convenience, we deliberately confuse a substitation
and its extensiow. Also, rather than writings(¢), we shall writeto. Given two substitutions
o = {t;/X;}{_, andf = {s;/Y;}7",, their compositiorrf is the substitution which yields the
same result on all terms as first applyinghen applyingd on the result. One computes such a
composition as the set:

o= ({t9/X|t/X co} — {X/X|X epom(o)}) U (8 — {s/Y |Y € pom(0)} ).
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For example, ife = {f(Y)/X,U/V} andd = {b/X, f(a)/Y,V/U}, then composing andd
yieldsod = {f(f(a))/X, f(a)/Y,V/U}; composing ando givesbo = {b/X, f(a)/Y,U/V }.
Substitution composition defines a preordes.(a reflexive and transitive) relation on substitu-
tions. A substitutiorr is said to benore generathan a substitutiof iff there exists a substitution
o such that = op. For example{ f(Y)/ X} is more general thafif (f(a))/X, f(a)/Y}.

Appendix B. Monoidal algebra

We recall some simple, but often overlooked, facts linking monoidal opesatm corresponding
order relations. These basic facts are important in that they allow viewingioedicomputation as
an approximation process based on the associated order.

A monoidal algebras a structurg D, ) consisting of adomainD of elements—-e., a set—
with an internal operation : D x D — D. In any monoidal algebra, the operatierhas an
associategrefix relation defined as:

Ve,ye D, x <,y iff 3z€ D, zxz=y. (27)

§Semigroup —A semigroup(D, «) is a monoidal algebra with domail? whose operation is
associativethat is,
Va,y,z € D, z*(y*xz)=(xxy)*z. (28)

Note that in a semigroufD, x), the prefix relation<, is always transitive (by virtue of associativity
of x). However, it is not necessarily reflexive.

$Monoid — A monoid (D, , 1,)) is a semigroug D, x) with a special elemerit, € D, called the
(x-)identity—or unit—element, such that:

VreD, rxl,=1,xz==x. (29)

Note that in a monoid D, x, 1,), the prefix relation<, is also reflexive (by virtue of the unit
element). Therefore, it is a preorder, and is sometimes called the mopoédis approximation
For example, first-order terms substitutions form such a monoid. The peddibion for substitution
composition is precisely the usual “more general than” quasi-ordetinga lpreorder only because
it is not anti-symmetric—-e., in this case<, N >, is equality up to variable renaming.

§Commutative structure — A commutativestructure is any of the foregoing structures whose op-
erationx also obeys theommutativityaxiom:

Ve,y €D, xxy=1yx*x. (30)
§Semilattice —A semilattice(D, ) is a commutative semigroup such thds idempotent i.e.:
Vee D, zxx=x. (31)

Another natural relation may be defined in terms of theperation in an idempotent monoidal
structure. It is the relatiort, on D defined as:

Ve,ye D, x <,y iff zxy=uy. (32)
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The relation<, is called thesemilattice orderingnd indeed defines a partial order bn Namely,
<, is reflexive (by idempotence &f), anti-symmetric (by commutativity of) and transitive (by
associativity ofx).

In a semilattice, the prefix relatior, is also an ordering and furthermore it coincides with the
semilattice ordering; that i¥x, y, x <, y iff z <, v.
Proof Assume thatr <, y. By definition, this means that x y = y. Thus, it is clear that
dz, z* z = y (takingz = y). Thereforex <, y. Now assume that <, y. Then, by definition,
T x zzy = y for somez,, € D. Hence,

rxy =a*(T*2zy) (replacingy by its value)
= (z %) x 22y (@ssociativity)
=T K Zyy (idempotence)
=Y

and sox <, v. [ |

Note thatx is automatically asupremunoperation for its semilattice ordering; namely, for all
xz,y,z € D:
if y<,z and z <,z then y*xz <, . (33)

Proof Assume thay <, x andz <, z; then,

yxx = =x by (32) (a)
Zzxr = X by (32) (b)
(yxz)*x(zxx) = x*zx by (a) and (b)]
(yxx)*(zxx) = = by (31)
(yxz)x(x* x) = =z by (28) and (30)
(yx2)xs = @ by (31)
yxz <y @ by (32).

Finally, note that if a semilatticéD, x) is also a monoid D, , 1,), Equation (32) entails that, is
the (necessarily uniqudgastelement ofD for <,. Then, it is sometimes written as (and called
bottorm). Thus, a semilattice with bottom can also be described as an idempotent comenutati
monoid.

The following table gives examples of common monoidal algebras.

Domain = 1, <. Algebra

F - € =< free monoid

R + 0 < commutative monoid
N x 1 divides commutative monoid
25 u 0 C semilattice

25 n S > semilattice

In this table,X is a finite alphabet, anB* is the set of all finite strings of symbols I, including
the empty string. The operation-' is string concatenationN is the set of natural number® is
the set of real numbers. The sets any non empty set.
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Appendix C. Strong Extensionality

Basically, the reason why tH&Veak Extensionality’rule of Figure 10 fails for cyclic terms is that
it works inductively, starting from terms’ leaves to their roots.
Consider, for example, an extensional sog £ such thatRITY (s) = {f}, and the terms:

X:s(f = X)&X :s(f = X') (34)

or, even better, the terms:
X:s(f = XN&X :s(f = X). (35)

Now, ARITY (s) = {f} means that's denotes a singleton sort wheneverfiteature denotes one
as well.” Semantically, in both examples, variabl&sand X’ denote therefore the same element
(due toall the features imRITY (s) being consistently sorted as singletons). However, the “weak
extensionality” rule will not transform either the terms in Examples 34 or 35 intovehereX and
X' are equal as they should be as per the semantics of arity and extensionality.

Clearly, this inductive manner of proceeding cannot work for cyclicresitsnal terms such as
Examples 34 or 35. As was seen in Section 4.2, we may thus pracgeductivelyfrom roots
to leaves keeping a record of which extensional sorts appear with whritdbles. This is done
by carrying acontextI’, a set of elements of the form: {Xi,...,X,}, whereX; € V, for
i=1,...,n,(n > 0), wheres € £ is extensional, and such that each sscitcurs at mosbncein
any such contextt. A contexted rulas one of the form:

(A,) RULE NAME :

Prior Context ~ Prior Form
[Condi ti on]

Posteri or Context +~ Posterior Form

Appropriate extensional sort occurrences record-keeping is thieved using contexted Rule
Extensional Variablén Figure 20. The “real” work is then done by contexted Ri8&ong Exten-
sionality” in Figure 20. Using these two rules on weak normal forms will work as drgdeeiz., it
will merge any remaining potential cyclic extensional elements that denoterttesisdividual.

(O14) EXTENSIONAL VARIABLE :
ifsc& and X ¢V and Vf € ARITY (s) : Fw{s:V.....} F ¢& X :5s
Xf=X, X} Cowiths" € £ Tw{s:VU{X},..} F & X:s

(O15) STRONG EXTENSIONALITY :
[ if se& ]

Fw{s:{X,X',...} - ¢
Fru{s: {X,..} F o&X =X

Figure 20:OS F-constraint strong extensionality normalization rules
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