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Abstract 

In this paper we consider the enumeration of all solutions of a 2D edge-matching puzzle. We 

show that a judicious modeling of the problem, combined with the use of appropriate data 

structures allows obtaining an effective filtering algorithm with complexity O(1) at each node 

of tree search. Our experiments show the relevancy of the proposed power/complexity trade-

off, compared to the results of some of the best available brute force tree search algorithms 

and to classical Constraint Programming models.  
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1. Introduction 

Recent months have seen an upsurge of interest in Edge matching puzzles since the release in 

July 2007 of the Eternity II game by TOMY, with a $2 million prize for the first submitted 

solution. Competition rules are summarized as follows on http://us.eternityii.com: 

Make a square from all the pieces, 

With the grey ones round the border;(…) 

Match all touching pairs of edges  

Do it first and win US$2 Million! 

The simplicity of the rules (placing 256 square tiles on a 16x16 board such that all adjacent 

tiles have matching colors along their common edge) and the value of the prize, lead a certain 

number of researchers and puzzle fans to imagine numerous solving algorithms or identifying 

properties of this kind of problem. A yahoo forum has been created on this topic and gathers 

more than 2000 members (http://games.groups.yahoo.com/group/eternity_two/). In particular 

Demaine & Demaine (2007) established the NP-completeness of the problem and some of its 

variants. We also refer the reader to Owen (2007) for remarks on the design of hard instances. 

In this paper, we focus on the enumeration of all solutions of a puzzle. Many competitors 

perform such enumerations on different instances in order to compare their backtracking 

algorithms. However the criteria usually put forward is the number of explored nodes per 

second. However it can be profitable in a tree search to spend more time on each node, if it 

allows decreasing the number of nodes to be explored. This is one of the founding principles 

of Constraint Programming (CP), whose application at each node of a search tree allows 

eliminating many branches (Montanari 1974, Mackworth 1988). Few CP based approaches 

have been described for edge matching puzzles, apart from Geoff Harris path-consistency 

based algorithms (Harris 2008) and the CP model introduced by Schaus and Deville (2008).  

We confirm in this article that global filtering algorithms can yield a dramatic decrease of the 

number of nodes to be explored in the enumeration of all solutions. Besides, we show that an 

appropriate model for this problem, combined with the use of efficient algorithmic structures 

allows obtaining global and effective filtering with complexity O(1). Compared to some of 

the best available backtracking algorithms, our approach explores a much smaller number of 

nodes in a competitive time. 
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2. The problem 

In this section we define the problem and describe a first CP model.  

2.1. Definition 

The problem can be described as follows. With N and K two positive integers (the side of the 

board and the number
1
 of colors) and T a collection of  N² quadruplets of integers in interval 

[0,K] (tiles as defined by their colors in the order north=0,east=1, south=2, west=3), is it 

possible to place all these tiles on a N×N board such that all adjacent tiles have matching 

colors along their common edge, with all edges of color « 0 » on the border of the board ? By 

convention the cell (0,0) will be the bottom left corner and the rotation is defined as the side 

of the tile oriented  northwards.  

More formally, a solution is an assignment to each pair (i, j)  [0,N-1]², of a pair (t(i,j), r(i,j)) 

 T × [0,3] describing the tile placed on cell i,j and the rotation applied to this tile, such that: 

1.  Each tile is used exactly once   

 (i1, j1, i2, j2)  [0,N-1]², t(i1, j1) = t(i2, j2) if and only if i1= i2 and j1,= j2 

2. Two consecutive tiles on a column have identical color along their common edge  

 i  [0,N-1]  j [0,N-2],   

t(i, j)[(0 + r(i,j)) mod 4] = t(i, j+1)[(2 + r(i,j+1)) mod 4]  

3. Two consecutive tiles on a row have identical color along their common edge  

 i  [0,N-2]  j [0,N-1],   

t(i, j)[(1 + r(i,j)) mod 4] = t(i+1, j)[(3 + r(i,j+1)) mod 4]  

4. All border have color « 0 »  

 i  [0,N-1],   

 t(i, 0)[(2 + r(i,j)) mod 4] = 0, t(i, N-1)[(0 + r(i,j)) mod 4] = 0 ,  

 t(0, i)[(3 + r(i,j)) mod 4] = 0, t(N-1,i)[(1 + r(i,j)) mod 4] = 0 

2.2. Filtering algorithms 

Constraint 1 is a classical matching constraint, whose consistency can be filtered (weakly) by 

a clique of binary constraints of the kind t(i1, j1) ≠ t(i2, j2). These constraints will basically 

infer that once placed on a cell, a tile cannot be used on any other cell. When instantiating a 

variable t(i, j), at most |T|-1 value removal are performed. The complete consistency of this 

constraint can also be ensured with an AllDifferent constraint (Régin 1994). This global 

constraint is able to detect that a subset of p tiles can only be assigned to a subset of p cells 

(strongly connected components in the bipartite graph associated to the matching problem). 

The complexity of this constraint is O(|T|
2.5

). In the remaining of this paper, we will refer to 

models with or without AllDifferent to denote these two filtering modes. In Section 6, we 

illustrate this additional filtering power. 

Constraints 2,3 et 4 could be modeled ―as is‖, with equality and Element constraints (v=L(i) 

with i and v two variables and L an array of integers). However, if such a model would 

correctly infer that a cell with a red edge must receive a tile with a red edge, it would not be 

able to detect that a cell with two red edges must receive a tile with two red edges. We will 

refer to 4-edge consistency to denote the filtering algorithm removing from the domain of a 

variable t(i,j) all tiles unable (in any rotation) to match the colors of the four edges of the cell, 

and eliminating all impossible rotations of the domain of r(i,j) once variable t(i,j) is 

instantiated
2
. The complexity of this filtering is smaller than O(|T|) since it merely requires 

checking (in constant time) for each value of the domain of t(i,j) that a consistent rotation 

exists. Note that this level of consistency could also be modeled with an extensional (table) 

constraint or with a specific variable representing the pair t(i,j),r(i,j). Creating variables for 

                                                 
1
 If we take into account the « 0 » color  on the border, we have K+1 colors. 

2 It seems clear that filtering the domain of r(i,j) while t(i,j) is not instantiated would be hardly useful , since it 

would amount to comparing possible rotations of very different tiles.  
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the color of each edge would be useful as well, and we will see in section 6.3 that it can 

significantly improve domain reductions. 

3. Proposed Model 

In the following sections we will prove that it is possible to implement in constant time a 

filtering algorithm very similar to 4-edges consistency + AllDifferent. To achieve this goal, 

we focus on pairs of colors and related filtering rules in Section 3.1 and discuss the resulting 

model in Section 3.2  

3.1. Color Pairs 

For any color pair k1, k2 it can be interesting to count the number of tiles with colors k1, k2 

in clockwise consecutive order. For instance in the case of Eternity II
TM

, this number is 

smaller than 12 if k1=0 or k2=0 and smaller than 7 otherwise, namely for the 196 inner tiles. It 

shall also be noted that among the 17² possible combinations of the 17 inner colors, 20 appear 

on no tile. In fact for an instance with |T| tiles and K colors, the average number of matching 

tiles for each pair of colors is always smaller than 4|T| / K², which is a relatively small number 

for difficult instances with homogenous color distribution. Indeed, with a small number of 

colors the number of solutions is likely to be huge: in the extreme ―K=1‖case, any assignment 

is a solution. On the contrary, with a large number of colors, we have very little choice: in the 

extreme case where each color appears only twice, the puzzle can be built with a greedy 

algorithm. 

This remark suggests a model centered on color pairs, with K² ColorPair(k1, k2) structures. 

For each pair of colors k1, k2, ColorPair(k1,k2) contains two sets: 

 Offer(k1,k2)  T is the set of available tiles containing at least once the color sequence k1, 

k2 in clockwise order. The set of already placed tiles having this property will be denoted 

by Unavailable(k1,k2).  

 Demand(k1,k2)  [0,N-1]² is the set of uninstantiated cells with two clockwise-consecutive 

edges of colors k1 and k2, respectively. In other words it means that tiles on two neighbor 

cells constrain this cell to receive a tile from set Offer(k1,k2). Naturally, having an edge on 

the border of the board is equivalent for a cell to having a neighbor cell presenting color 

0. In the remaining of this paper we will consider the border of the board as 

« neighbors ». 

 

For each assignment of a tile to a cell with a certain rotation, that is to say for each assignment 

(t(i,j), r(i,j)) := (, ), the ColorPair structures are maintained as follows. Tile  is removed 

from the four Offer(k1,k2) sets it belongs to, and cell (i,j) is removed from the (at most) four 

Demand(k1,k2) sets it belongs to. Then all four neighbor cells are analyzed (but for the 

instantiated ones) in order to determine whether the placement of tile  in (i,j) causes neighbor 

cells to integrate new Demand(k1,k2) sets. For instance if cell (i+1,j+1) contains a tile ’ with 

rotation ’, then if cell (i+1,j) is empty it now requires the color sequence 

[(1+) mod 4],’[(2+’) mod 4] in clockwise order. Cell (i+1,j) must then be added to the 

corresponding Demand(k1,k2) set, namely Demand([(1+) mod 4],’[(2+’) mod 4]) as 

illustrated on figure 1. 
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cell (i+1,j) has to be
added to demand (k1,k2)

 
Figure 1 

Maintaining these ColorPair(k1,k2) structures allows performing the following inferences: 

 Contradiction. If |Offer(k1,k2)| < |Demand(k1,k2)| then the number of cells requiring color 

sequence k1,k2 in clockwise order is larger than the number of remaining tiles offering this 

sequence. The problem is inconsistent. 

 Instantiation. If |Offer(k1,k2)| = |Demand(k1,k2)| = 1 then only one tile   can be placed on 

cell (i,j) requiring this color sequence. If this tile contains sequence k1,k2 only once, then 

there is a unique possible rotation  of tile . 

3.2. Properties 

First of all, the notion of color pair ―in sequence‖ (in clockwise order) can be generalized 

to the case of the K(K-1)/2 pairs of opposite colors. All properties described in this paper on 

sequence pairs apply to opposite pairs as well. We have implemented both views, which 

means that each tile belongs to at most 6 Offers sets. This notion can also be ―generalized‖ to 

single colors, counting the number of offered and demanded edges or each color, but knowing 

a single edge of a color yields little filtering (in Eternity II each color appear on around 40 

tiles). 

In terms of complexity, the algorithm (described in Section 3.1) maintaining these 

ColorPair structures requires for each assignment at most 6 tile removal from Offer sets and 6 

cell removal from Demand sets, then, after analyzing the edges of uninstantiated neighbor 

cells, at most 4x3 cell additions in Demand sets. Storing these sets in data structures providing 

constant time addition and removal
3
, yields to an O(1) filtering algorithm. The reverse 

operation (unassign) has the same complexity. 

A specificity of this constraint-Programming model is that the domain of variables ((t(i,j), 

r(i,j)) for each cell (i,j)) is not maintained at all, for the sake of efficiency. What we maintain 

is the current state of the board, that is to say the values of already assigned couples (t(i,j), 

r(i,j)), together with K² structures ColorPair(k1, k2) required by our filtering algorithm. Now if 

we consider the resulting filtering on an empty cell, we note that the domain that would be 

inferred by the above-mentioned 4-edges consistency is contained in the intersection of the 

required Offers(k1,k2). In particular, for cells with 2 neighbors, the domain computed by 4-

edges consistency is identical to the Offer(k1,k2) set corresponding to the pair of neighbor 

colors.   

As for cells with 3 or 4 neighbors we will see in Section 4.2 that our search strategy branches 

on this kind of cells as soon as they appear. Then restricting their domain appears less crucial. 

This is the reason why we do not maintain the domain of variables themselves but rather these 

ColorPair structures (note that Offer sets are not domains since they end with value  for 

solutions). Their number is similar (K² instead of |T|), but they present the advantage of 

having a smaller size and allow a direct triggering of the contradiction and instantiation rules.  

Finally, these rules yield inferences that would not be detected by local consistency. 

Indeed, considering a single cell would only allow detecting the absence of available tiles 

                                                 
3
 We use the classical data structure in which each element maintains its own position in an array. The |X| first positions of this 

array contain the elements of set X. See http://www.carva.org/thierry.benoist/eternity2.html for an implementation of this 
structure. 
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corresponding to the neighborhood of this cell or the uniqueness of such a tile but not global 

contradictions on the total number of cells demanding a certain type of tile. We will see in 

Section 6 that this simple model can decrease the number of nodes by 100 compared to brute 

force search. 

4. Reinforced filtering 

Our ColorPair based model can be enriched with AllDifferent-like inferences and with 

specific reasoning on remaining tiles.  

4.1. Preemptions 

If |Offer(k1,k2)| = |Demand(k1,k2)| then all tiles of Offer(k1,k2) will necessarily be used on cells 

of set Demand(k1,k2). For instance in the first case of figure 2, we can assert that both tiles 

presenting sequence 1,2 will be placed on both cells demanding this sequence. We will say 

that these tiles are preempted by ColorPair(k1,k2) and are thus removed from all other Offer 

sets they belong to, what may trigger new inferences: instantiations, contradictions or even 

new preemptions. It shall be noted that this reasoning only applies in the absence of cells with 

3 or 4 instantiated neighbors, that is to say if Demand(k1,k2) sets are pairwise disjoint. In the 

same case as figure 2, the existence of a cell with edges 5,1,2 prevents the removal of both 

tiles « 1,2 » from Offer(5,1) because such a removal would make |Offer(5,1)| strictly smaller 

than |Demand(5,1)|, thus triggering an undue contradiction. In practice, preempted tiles are 

not removed from Offer sets but merely tagged as preempted and an nbPreempted counter is 

maintained on each Offer. Hence we consider that the number of available tiles is either 

|Offer| or |Offer|-nbPreempted depending on the presence of cells with three neighbors or 

more. As announced above, we will see in Section 4.2 that our search strategy makes the 

latter case much more frequent (no cell with 3 or 4 neighbors). 

This concept of preemption can be compared to the filtering principles of the AllDifferent 

constraint. A key feature in this constraint is the notion of Strongly Connected Component 

(SCC) which corresponds to a set of variables which cannot takes values outside of a set of 

values (see Regin, 1994 for details). Similarly, the preemption mechanism described above 

detects a set of tiles which must be assigned to a set of cells. Yet preemption filtering is not 

equivalent to the complete AllDifferent, as illustrated in the second case of figure 2. In this 

second example the AllDifferent constraint would detect that both tiles on the right side 

cannot be assigned to any other cells than those on the left side. On the contrary our 

preemption rules would not detect anything since |Offer(1,2)|=2 and |Demand(1,2)|=1, 

|Offer(2,3)|=2 and |Demand(2,3)|=1. In other words we only detect strongly connected 

components involving offers and demand for the same color pair. 
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Figure 2 

 

However, the complexity of preemption detection is much smaller than that of a ―real‖ 

AllDifferent. These specific SCC are detected in O(1), and tagging tiles as preempted is done 

in at most 6x|Offer| operations. Since each tile cannot be preempted by more than one 

ColorPair, the amortized complexity of this tagging is O(|T|) for each branch of the search 

tree what amounts to an average complexity per node of O(1).  
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We will see in Section 6 that on relatively small instances (7x7 to 10x10) a factor of 100 to 

1000 is observed on the total time when comparing our efficient reinforced filtering 

(preemptions) to the standard modeling with AllDifferent in O(|T|
2.5

). 

4.2. Reasoning on remaining tiles 

 
Upper bound on shared edges 

 

It is possible to detect that a set of tiles cannot be correctly placed. For instance if there are no 

demanded red edge anymore whereas there are exactly two such edges left, on the same tile, 

then placing this tile will be impossible. More generally, if there are m edges left for a color k 

and only m’ such edges are demanded, then m-m’ k-colored edges will have to touch each 

others. Now [Benoist 2008] shows that the maximum number of edges that can be shared by 

M square tiles is equal to h(M) : 

 
Hence if these m edges are dispatched on m” tiles, the inequality m-m’ ≤ 2h(m”) must be 

satisfied, each shared edges ―consuming‖ two k-colored edges. This property holds for any set 

of colors but can be checked in constant time if we consider singletons only, each assignment 

requiring the check of at most four colors. 
 
Cycle detection 

If k is a color of the border, and there are only two k-colored edges (on two tiles) to be placed 

and no cell demanding color k, then these two tiles will necessarily be placed next to each 

other. In such a situation (detected in constant time), similar links extending this chain can be 

searched easily: a chain of length c will be identified in O(c) and c cannot be larger than K 

since each link of the chain correspond to a color. If this chain is a cycle then the border 

cannot be completed anymore which means that the current assignment is inconsistent.  

 

These two filtering rules have a small complexity and allow detecting inconsistencies on 

remaining tiles. Unfortunately, we will see in Section 6 that the obtained gain on the total 

number of explored nodes is around 2%. 

5. Search strategy 

Now that both our model and our filtering algorithms have been defined (sections 3 and 4), 

we describe in this section our tree search which is defined by our descent strategy (choice of 

the next cell to be instantiated) and our backtracking strategy (detection of branches whose 

exploration is useless). Both strategies decrease the total time by more than 25% (see Section 

6.2). 

5.1. Branching Strategy 

 

The choice of the next cell to be instantiated is based on two criteria. First of all we focus on 

highly constrained patterns. If not such pattern is found we select the most urgent ColorPair 

and pick one of its demanding cells.  
 

Patterns 

 

As evoked in Section 3.1, the large number of possible tiles for cells having zero or one 

neighbor suggests branching on cells with at least two neighbors. Such a strategy is possible 

since while the board is not covered with tiles there is necessarily at least one empty cell with 

two instantiated neighbors. For instance the empty cell with minimal coordinates (i,j) (in a 

lexicographic sense) has necessarily to its left and below, either a border or an instantiated 
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cell, hence two edges with determined colors. These cells with at least two neighbors will be 

referred to as ―surrounded cells‖. 

 

We favor the most constrained cells which means, by decreasing priority: 

1. Cells with four instantiated neighbors 

2. Cells with three instantiated neighbors 

3. Cells with two instantiated neighbors and one surrounded neighbor 

4. Cells with one instantiated neighbor and two surrounded neighbors. In this latter case, we 

select one of the two surrounded neighbors.  

Case 3

Cell n 191 has two instantiated

neighbors (n 175 and n 192) and

one surrounded neighbor (n 207).

Cell n 207 is in the same situation.

Case 4

Cell n 210 has two surrounded

neighbors (n 194 and n 226).

  
Figure 3 

 

Cases 1 and 2 correspond to highly constrained situations where the number of possible tiles 

is likely to be very small. It can even be null since we do not maintain local consistency 

around each cell: the intersection of Offer(k1,k2) sets attached to the cell can be empty (hence 

the importance of favoring these cells in our variable selection strategy). Favoring these 

variables follows a classical MinDomain principle. Case 3 correspond to the case of a cell 

whose instantiation will strongly constrain a neighbor cell. In the example considered in the 

above figure, placing a tile on cell n° 191will make cell n°207 a 3-neighbor cell : regardless 

of the size of the domain of cell n° 191, the number of tiles preserving the feasibility of cell n° 

207 is probably very small if not null. Finally is the case 4 of this figure, instantiating cell n° 

194 or n° 226 will lead to the situation of case 3. Detecting these patterns is done in constant 

time since it just requires maintaining the number of instantiated and surrounded neighbors 

for each cell. If such a pattern is detected, the possible values for the selected cell are 

computed from the intersection of the relevant Offer sets.  

 
Heuristics for the choice of the most urgent pair 

 

In the absence of such patterns, we will denote MinOffer the strategy consisting in selecting a 

ColorPair(k1,k2) with Demand(k1,k2)≠ and such that Offer(k1,k2) has minimal size (classical 

MinDomain). Then we randomly choose a cell in Demand(k1,k2). If we maintain, in constant 

time, D sets of ColorPair corresponding to the D possible cardinalities for Offer sets, then the 

selection of this ColorPair is done in O(D). As pointed out in Section 3.1, D is usually small : 

smaller than 12 in Eternity II
TM

 (16x16 instance). 

 

This selection strategy can be improved by simple statistic reasoning. For each pair 

ColorPair(k1,k2), the probability
4
 for each tile of Offer(k1,k2) to be used on one of the cells of 

Demand(k1,k2) is a priori equal to Demand(k1,k2)/ Offer(k1,k2). Logically this probability is 0 

if pair k1,k2 is not demanded by any cell and  1 if the number of demands equals the number of 

offers for this pair, namely in a preemption case (described in Section 4.1). This estimation 

can be refined taking into account the concurrent demands for each tile. For a tile , let 

pairs() be the set of all pairs p such that offerp. Denoting by offerp and demandp the two 

                                                 
4
 The term « probability » is improper for these heuristic estimators, but was kept for the sake of 

readibility. 
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sets attached to a pair p, we can estimate the probability for tile  to be used on one of the 

cells of demandp by the following formula. 




















0

)(

0 1)(

pp
pairsp p

p

offer

demand
pP



   

Indeed, being available for p0 requires not to be used by any other pair. We call expected 

offer, and denote by E(|offerp|) the sum of these probabilities over all tiles of offerp. 

 

  



poffer

p pPofferE


 )(  

Using this expected value we can define a criterion for the choice of the most urgent color 

pair. 

 MinExpectedOffer consists in selecting the pair p minimizing E(|offerp|), 

 MinExpectedGap consists in minimizing E(|offerp|) - |demandp|, in order to focus on 

pairs likely to trigger a contradiction (first fail principle), 

 MinExpectedRatio consists in minimizing the ratio E(|offerp|) / |demandp|, pursuing 

the same goal as the above criterion, 

 MaxExpectedFiltering consists in minimizing  E(|offerp|) - |offerp| (always negative). 

The smaller this value, the greater the consequences on other pairs of the instantiation 

of one of the corresponding cells. 

We will see in Section 6.2 that our best results have been obtained with MinExpectedGap. In 

any case, once the ColorPair is selected, the cell to be instantiated is randomly chosen among 

demands for this pair. The list of branches issued from a node in the search tree is a list of 

tile/rotation pairs (in T × [0,3]) consistent with the current colors of the four edges of the cell.  

The value selection heuristic is of no importance in this paper since we consider complete 

search (enumeration of all solutions). Yet sorting candidate tiles by decreasing probability 

P(p0) would be an natural criterion, and improving this selection in order to get feasible 

solutions as soon as possible is still an interesting open question for these puzzle matching 

problems.  

5.2. Backtracking Strategy 

Example 

Upon failure during tree search, rather than backtracking to the above node, it can be 

preferable to detect the cause of the failure so as to backtrack higher in the tree, to a variable 

involved in the conflict, thus avoiding the exploration of worthless subtrees. 

In the example below, testing each of the two remaining tiles (in Offers(1,2)) for the cell 

tagged ―?‖ we observe that both lead to failure. Now what if previous nodes involve cells that 

are not represented in this figure ? Revising these cells will not fix the problem detected there 

and time will be wasted exploring vainly a potentially large number of nodes. On the 

contrary, if we manage to detect that the conflict will remain while all cells represented in this 

picture keep their current colors, then we can perform an ―intelligent‖ backtrack or conflict-

based backjumping (Gaschnig 1979, Ginsberg 1993), backtracking in the tree until a node 

involving one of these cells is found.  
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Figure 4 

 
Computing explanations 

 

When detecting an inconsistency, we need to determine its cause, namely a set of cells (called 

explanation) whose current values are sufficient to explain the current contradiction. In the 

search tree, when all branches issued from a node have been explored, the explanation for the 

failure of this node is merely the union of the explanation of child nodes. 

In our model, failures are detected in only two ways: 

 Either discarding some tile/rotation pairs for a cell because of mismatching edges. It is the 

case of cells with 3 or 4 neighbors described in Section 4.2, for which the explanation is 

the set of the 3 or 4 instantiated neighbors. 

 Either with the rule |Offer(k1,k2)| < |Demand(k1,k2)| defined at paragraph 3.1. In this case, 

the explanation is made of: 

o For each cell of Demand(k1,k2), both neighbors presenting colors k1 et k2 ; 

o For each tile of Unavailable(k1,k2), the cell this tile was assigned to. 

These explanations are valid since uninstantiating all cells except those of the explanation 

cannot resolve the conflict. They are also minimal for the inclusion relation that is to say that 

there are cases when uninstantiating a single cell of the explanation would resolve the 

conflict. 

Concerning tiles   in Unavailable(k1,k2) , it shall be noted that if we have instantiated 

neighbors on both sides k1 and k2, then replacing in the explanation the cell containing   by 

these two neighbor cells is valid. Besides, if these tiles were placed before , then this new 

explanation is better because it involves ―older‖ cells and thus will allow backjumping higher 

in the tree. 

 

As for tiles preempted by a ColorPair (see Section 4), the explanation of their unavailability 

is built as in the case of contradictions of kind |Offer(k1,k2)| < |Demand(k1,k2)|. This 

explanation is recorded upon preemption detection and reused later, each time the preemption 

of  one of these tiles need to be explained. 

 

The complexity of the computation of an explanation is determined by the costlier operation 

of the computation which is the scan of both sets Demand(k1,k2) and Unavailable(k1,k2), 

namely O(D) (with D the size of the largest Offer set). As for the union of two explanations 

its theoretical complexity is O(|T|) but an bitvector implementation yields a satisfying 

practical efficiency. 

6.  Experiments 

We compare the different versions of our algorithm (implemented in Java) with one of the 

best available backtrackers, posted by doc_smith
5
 on the yahoo forum dedicated to Eternity 

II
TM

. This tree search, implemented in C, is able to explore millions of nodes per second. 

Adapted data structures allow a quick computation of the set of possible tiles for a cell that is 

                                                 
5
 http://games.groups.yahoo.com/group/eternity_two/files/doc_smith 
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to say the set of possible children of a node. However no global reasoning is implemented for 

branches elimination. We also report the results kindly sent by mgaillard for this benchmark.  

We generated 140 puzzles for these experiments, from size 7x7 to 10x10. For a board of side 

N and a maximum number of colors K, we randomly assign a color to each of the 2N(N-1) 

edges of the board (uniform choice in [1,K]). Resulting tiles are randomly scrambled and 

rotated. Applying the backtrackers and our algorithms to each instances, we kept the 48 ones 

for which at least one approach succeeded in enumerating all solutions in less than 6 hours. 

These 48 instances can be downloaded, together with detailed results of our experiments, 

from http://www.carva.org/thierry.benoist/eternity2.html. All results have been obtained on 

the same 3GHz PC, except for the mgaillard backtracker (implemented in C and tested on a 

2.2 GHz laptop). All instances but one have less than 8 solutions and 60% have only one 

solution. 

Our goal is to compare the time and number of nodes needed by all these approaches to 

enumerate all solutions, independently of the heuristics or value ordering strategies embedded 

in these algorithms. Therefore only full tree search are considered in what follows. 

6.1. Main findings 

The following curves compare our four main approaches, with backtrackers identified by 

the name of their author, ―CP O(1)‖ referring to the dedicated algorithm described in this 

paper (whose variants are evaluated in next Section) and choco denoting our experiments with 

a CP solver (Laburthe et al. 2000). Figure 5 represents on a logarithmic scale the number of 

nodes explored by each approach, with instances sorted by increasing best time on X-axis 

(excluding the 15 instances that either doc_smith or choco could not solve in 6 hours).  
 

 
Figure 5 

 

The effectiveness of constraint propagation appears clearly on these curves. Both CP 

based approaches explore much less nodes. As for the differences between both backtrackers 

they suggest that some kind of inference is implemented in mgaillard.  

Since the number of nodes per second is roughly constant for each approach (100 for 

choco, 100 000 for CP O(1), and more than 20 millions for both backtrackers), the result of 

time comparison is straightforward: the filtering efforts eventually pays off  for large 

instances. Figure 6 compares on a logarithmic scale the time taken by CP O(1) and mgaillard 

(the only two approaches able to solve each instance within 6 hours) to complete their tree 

search. Not surprisingly, CP is competitive for the largest instances of this benchmark, and 

http://www.carva.org/thierry.benoist/eternity2.html
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the tendency seems to indicate that CP would perform better than pure backtrackers on more 

difficult instances. 
 

 
Figure 6 

6.2. Key components 

It can be interesting to evaluate the relative impact of the filtering algorithms and 

strategies exposed in this paper. Detecting instantiation and contradictions with ColorPairs is 

the main difference between our approach and pure backtrackers. Yet preemptions detection, 

shaving, backjumping and variable selection strategies also play a significant role. 

   Reinforced filtering introduced in Section 4 is the least effective component. Indeed 

even if ignoring preemptions increases the number of explored nodes by 24% it does not 

significantly modifies the total time. As for rules on remaining tiles (shared edges count and 

cycle detection) they only yield a decrease of 2% in terms of time and nodes. 

On the contrary disabling backjumping increases the number of nodes by 50% and the 

total time by 30%. Shaving (Torres  & Lopez  2000) also has a key impact as illustrated in the 

following curve (Figure 7) where total time and number of nodes (over all instances) are 

represented for different values of our shaving limit. Shaving with limit L means that for each 

cell of domain smaller or equal to L, we try all possible values in the domain thus inferring 

contradictions (if no value can be instantiated without triggering a contradiction) or 

instantiations (if only one value can be instantiated without triggering a contradiction). In 

figure 3, ―-― codes for no shaving and ―all‖ codes for L=|T|. We see that shaving can decrease 

the total time by a factor of 5 or 6. 

 

Figure 7. Impact of shaving (sum over all instances) 
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Finally, variable selection heuristics play an important role. In the table below, we present 

the gain in time and nodes obtained by the different heuristics described in Section 4.2 against 

the simple MinOffer (or ―MinDomain‖) strategy, ommitting MaxExpectedFiltering whose 

results turned out to be worse than MinOffer.  
 

MinExpectedOffer 

time gain 16,25% 

node gain 22,75% 

MinExpectedGap 

time gain 30,50% 

node gain 38,00% 

MinExpectedRatio 

time gain 23,50% 

node gain 33,00% 

Table1. Impact of variable selection heuristics (sum over all instances) 

6.3. Comparison with Choco 

In our introduction to Section 3, we claimed that our constant time filtering algorithms would 

be very similar to 4-edges consistency + allDiff. This can be checked by implementing 4-edge 

consistency in Choco, combined with the standard complete AllDifferent constraint. The 

results below, on the 10 instances that this choco model could solve in 6 hours, show that the 

completeness of the AllDifferent constraint decreases the number of nodes by 27% in average 

compared to our preemption rules which only detected some of the strongly connected 

components (see Section 4.1). Note that even if this basic version of our CP algorithm 

involves no additional filtering it can sometimes explore a smaller number of nodes because 

differences in domain reductions will result in differences in variable selection (minDomain 

and simultaneous assignment of tile and rotation for both approaches), hence the search space 

will be explored differently. 
 

instance 

time 

BasicCP 
O(1) 

(seconds) 

nodes 

BasicCP 

O(1) 

time choco 

4edges 

(seconds) 

nodes 

choco 

4edges 

time choco 

edge 
filtering 

(seconds) 

nodes 

choco edge 

filtering 

E_10_16.b13i13.nohint 12    2 149 082    15 595    4 974 961     303    9 814    

E_10_17.b13i13.nohint 24    4 408 684    6 348    1 932 224     239    7 186    

E_10_5.b14i14.nohint 68    13 388 596    6 044    1 646 478     440    12 429    

E_10_7.b12i15.nohint 34    5 521 750    4 170    1 151 440     159    3 999    

E_10_8.b13i14.nohint 96    19 494 856    17 965    5 104 015     785    22 527    

E_7_1.b6i6.nohint 68    13 285 760    12 865    20 366 984     468    193 257    

E_7_2.b6i6.nohint 38    7 808 848    4 517    8 837 142     319    128 327    

E_9_13.b10i10.nohint 32    6 242 786    18 172    11 054 431     521    41 849    

E_9_3.b11i12.nohint 38    6 865 888    8 627    3 908 993     428    22 942    

E_9_4.b9i12.nohint 26    4 858 100    5 534    2 662 968     79    5 017    

Table 2. Constraint Programming results 

This comparison also shows that what causes the very small number of nodes of Choco in 

Section 6.1 is not the complete AllDifferent but the rich filtering on the color of edges (edge 

filtering column). Indeed, from the set of possible tiles for a cell we can infer that some colors 

are not possible for some edges. The obtained results show that these inferences on the 

domain of ―edge variables‖ trigger useful propagations and reduce the size of the search tree. 

7. Conclusion and future work 

These results show that, for the enumeration of solutions of 2D edge-matching puzzles, the 

filtering algorithms proposed in this paper (ColorPairs + preemptions) combined to an 
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effective heuristic (expected gap) and to a well known intelligent backtracking strategy 

(backjumping), yield a dramatic decrease of the number of nodes to be explored compared to 

brute force tree search. The constant time complexity of this filtering ensures that this 

approach becomes faster than brute force enumeration when instances are difficult enough. 

A possible way for attacking the Eternity II puzzle consist in applying local search methods to 

a optimization variant of the puzzle. For instance Shaus & Deville (2008) consider fully 

instantiated boards and minimize the number of mismatching edges. Alternatively, we can 

consider partially instantiated boards and maximize the number of tiles positioned without 

mismatching edge. In the latter model, we have implemented a large neighborhood search 

using our CP-based tree search for each move. A possible weakness of this kind of approach 

is that the distance from a partial solution (with a very small number of mismatching edges or 

a small number of unassigned tiles) to a full solution may be very large in the considered 

neighborhood. That is to say that placing the last tile is likely to require a very large 

rearrangement of the board. 

 

Our future works include precomputing endgames, namely all the feasible corner triangles 

with some fixed side s, and storing no-goods. A nogood would be a set of tiles and a list of 

colors. Once the extensions of a top left square of tiles have been explored, any further 

arrangement of the same tiles, leading to the same ―frontier‖ of colors can be discarded as no-

good. 

 

Beyond these puzzles, this work contradicts the common belief that Constraint Programming 

pays the power of its inferences by a high complexity at each node, the former not always 

compensating for the latter. Recent works have shown that a slightly weaker filtering 

algorithm with a dramatic decrease of complexity can be a good compromise for some 

problems (Lopez-Ortiz et al. 2003). In this paper we have shown that exploiting properties of 

the problem and using efficient and dedicated data structures sometimes allows performing 

global and powerful filtering in a reasonable time if not in constant time. 
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