
1

How to prevent
tall trees from growing to the

sky

Subtitle: don’t do NAAR

Jean-Charles REGIN
ILOG, Sophia Antipolis

regin@ilog.fr

Tall tree can’t grow to the sky

In CP

� Tall tree grow to the sky!
� A lot of problems addressed by CP have an

exponential complexity
� In fact, it depends on P vs NP

Outline

� P = NP: role of CP?
� P ≠NP: shifting the exponential
� Theoretical research
� Applied research
� Benchmarking in CP
� Conclusion

Acknowledgements

� Philippe Baptiste
� Pascal Van Hentenryck
� Carla Gomes
� Diego Olivier Fernandez Pons
� Phokion G. Kolaitis and Thomas Raffill

P vs NP

� P=NP or P≠NP
� Consider the two possibilities in regards to the

impact to CP

P = NP

� If a general algorithm for solving NP-Complete
Problems exists then what is advantage of CP ?

� There are several reasons to believe that our
community is going to disappear:
� All the known polynomial algorithms have not a huge

complexity (the max is currently close to n^10)
� CP is not able to solve polynomial instances in polynomial

time. There is no guarantee about that.

P = NP

� Fortunately, there are also some hopes:
� A non constructive proof exists for proving a problem is in

P (P. Jegou told me that, ACM 85 paper)
� A very large constant is possible
� The degree of the polynom can be very large (n^1000)

� This would mean that the general algorithm would
not be usable in practice

Outline

� P = NP: role of CP?
� P ≠≠≠≠NP: shifting the exponential
� Theoretical research
� Applied research
� Benchmarking in CP
� Conclusion

P ≠ NP

� Ok, we cannot avoid an exponential behavior
� For some instances, an NP Complete Problem will

required an exponential time to be solved
� So, our only hope is to shift the exponential such

that the problem is solvable for a size and a time
that are acceptable

Shifting the exponential

0000

100100100100

200200200200

300300300300

400400400400

500500500500

600600600600

700700700700

800800800800

900900900900

0000 10101010 20202020 30303030 40404040 50505050

pbpbpbpb

Shifting the exponential

0000

200200200200

400400400400

600600600600

800800800800

1000100010001000

1200120012001200

1400140014001400

0000 10101010 20202020 30303030 40404040 50505050 60606060 70707070 80808080

pbpbpbpb

The problem

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3

• n teams and n-1 weeks and n/2 periods
• every two teams play each other exactly once
• every team plays one game in each week
• no team plays more than twice in the same period

CP model: variables

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3

For each slot: 2 variables represent the teams
and 1 variable represents the match are defined

1 vs 6

T33a variable (T33a=6)
T33h variable (T33h=1)

M33 variable (M33=12)Mij=1 <=> 0 vs 1 or 1 vs 0
Mij=12 <=> 1 vs 6 or 6 vs1

CP model: T variables

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 T11h vs
T11a

T12h vs
T12a

T13h vs
T13a

T14h vs
T14a

T15h vs
T15a

T16h vs
T16a

T17h vs
T17a

Period 2 T21h vs
T21a

T22h vs
T22a

T23h vs
T23a

T24h vs
T24a

T25h vs
T25a

T26h vs
T26a

T27h vs
T27a

Period 3 T31h vs
T31a

T32h vs
T32a

T33h vs
T33a

T34h vs
T34a

T35h vs
T35a

T36h vs
T36a

T37h vs
T37a

Period 4 T41h vs
T41a

T42h vs
T42a

T43h vs
T43a

T44h vs
T44a

T45h vs
T45a

T46h vs
T46a

T47h vs
T47a

D(Tija)=[1,n-1]
D(Tijh)=[0,n-2]

Tijh < Tija

CP model: M variables

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

D(Mij)=[1,n(n-1)/2]

CP model: constraints

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

•• n teams and nn teams and n--1 weeks and n/2 periods1 weeks and n/2 periods
• every two teams play each other exactly once
•• every team plays one game in each weekevery team plays one game in each week
•• no team plays more than twice in the same periodno team plays more than twice in the same period

Alldiff constraints defined on M variables

CP model: constraints

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 T11h vs
T11a

T12h vs
T12a

T13h vs
T13a

T14h vs
T14a

T15h vs
T15a

T16h vs
T16a

T17h vs
T17a

Period 2 T21h vs
T21a

T22h vs
T22a

T23h vs
T23a

T24h vs
T24a

T25h vs
T25a

T26h vs
T26a

T27h vs
T27a

Period 3 T31h vs
T31a

T32h vs
T32a

T33h vs
T33a

T34h vs
T34a

T35h vs
T35a

T36h vs
T36a

T37h vs
T37a

Period 4 T41h vs
T41a

T42h vs
T42a

T43h vs
T43a

T44h vs
T44a

T45h vs
T45a

T46h vs
T46a

T47h vs
T47a

• n teams and n-1 weeks and n/2 periods
• every two teams play each other exactly once
• every team plays one game in each week
• no team plays more than twice in the same period

For each week w:
Alldiff constraint defined
on {Tpwh, p=1..4} U {Tpwa, p=1..4}

CP model: constraints

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 T11h vs
T11a

T12h vs
T12a

T13h vs
T13a

T14h vs
T14a

T15h vs
T15a

T16h vs
T16a

T17h vs
T17a

Period 2 T21h vs
T21a

T22h vs
T22a

T23h vs
T23a

T24h vs
T24a

T25h vs
T25a

T26h vs
T26a

T27h vs
T27a

Period 3 T31h vs
T31a

T32h vs
T32a

T33h vs
T33a

T34h vs
T34a

T35h vs
T35a

T36h vs
T36a

T37h vs
T37a

Period 4 T41h vs
T41a

T42h vs
T42a

T43h vs
T43a

T44h vs
T44a

T45h vs
T45a

T46h vs
T46a

T47h vs
T47a

• n teams and n-1 weeks and n/2 periods
• every two teams play each other exactly once
• every team plays one game in each week
• no team plays more than twice in the same period

For each period p:
Global cardinality constraint defined on
{Tpwh, w=1..7} U {Tpwa, w=1..7}
every team t is taken at most 2

CP model: constraints

� For each slot the two T variables and the M variable must be linked together;
example:
M12 = game T12h vs T12a

� For each slot we add Cij a ternary constraint defined on the two T variables
and the M variable; example:
C12 defined on {T12h,T12a,M12}

� Cij are defined by the list of allowed tuples:
for n=4: {(0,1,1),(0,2,2),(0,3,3),(1,2,4),(1,3,5),(2,3,6)}
(1,2,4) means game 1 vs 2 is the game number 4

� All these constraints have the same list of allowed tuples
� Efficient arc consistency algorithm for this kind of constraint is known

First model

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7Dummy

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4 . vs .

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6 . vs .

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7 . vs .

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3 . vs .

Introduction of a dummy column

First model

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7Dummy

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4 5 vs 6

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6 . vs .

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7 . vs .

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3 . vs .

Introduction of a dummy column

We can prove that:
• each team occurs exactly twice for each period

First model

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7Dummy

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4 5 vs 6

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6 2 vs 4

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7 1 vs 3

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3 0 vs 7

Introduction of a dummy column

We can prove that:
• each team occurs exactly twice for each period
• each team occurs exactly once in the dummy column

First model: strategies

� Break symmetries: 0 vs w appears in week w
� Teams are instantiated:

- the most instantiated team is chosen
- the slots that has the less remaining possibilities
(Tijh or Tija is minimal) is instantiated with that team

First model: results

teams # fails Time (in s)

4 2 0.01

6 12 0.03

8 32 0.08

10 417 0.8

12 41 0.2
14 3,514 9.2

16 1,112 4.2

18 8,756 36

20 72,095 338

22 6,172,672 10h

24 6,391,470 12h

MIPLIB

MIP solver limit

Second model

� Break symmetry: 0 vs 1 is the first game of the
dummy column

Second model

� Break symmetry: 0 vs 1 is the first game of the
dummy column

� 1) Find a round-robin. Define all the games for each
column (except for the dummy)
- Alldiff constraint on M is satisfied
- Alldiff constraint for each week is satisfied

Second model

� Break symmetry: 0 vs 1 is the first game of the
dummy column

� 1) Find a round-robin. Define all the games for each
column (except for the dummy)
- Alldiff constraint on M is satisfied
- Alldiff constraint for each week is satisfied

� 2) set the games in order to satisfy constraints on
periods. If no solution go to 1)

Second model: strategy

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

M variables are instantiated

Second model: strategy

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

M variables are instantiated

Second model: strategy

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

M variables are instantiated

Second model: strategy

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

M variables are instantiated

Second model: strategy

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

M variables are instantiated

Second model: results

teams # fails Time (in s)

8 10 0.01

10 24 0.06

12 58 0.2

14 21 0.2

16 182 0.6
18 263 0.9

20 226 1.2

24 2702 10.5

26 5,683 26.4

30 11,895 138

40 2,834,754 6h

MIPLIB

MIP limit

First model limit

First model: results

teams # fails Time (in s)

4 2 0.01

6 12 0.03

8 32 0.08

10 417 0.8

12 41 0.2
14 3,514 9.2

16 1,112 4.2

18 8,756 36

20 72,095 338

22 6,172,672 10h

24 6,391,470 12h

MIPLIB

MIP solver limit

P ≠ NP

� We have only two reasonable possibilities:
� We are doing pure theoretical research
� We are trying to “solve” existing problems

� Working on the middle topics has no real meaning.

Outline

� P = NP: role of CP?
� P ≠NP: shifting the exponential
� Theoretical research
� Applied research
� Benchmarking in CP
� Conclusion

Theoretical Research

� IMHO, the work of C. Gomes and B. Selman is an
excellent example of good theoretical study.

� I am not a specialist of this kind of research, so I can
give my opinion about it ☺

Phase Transitions

� A phase transition is an abrupt change in the
behavior of a property of a “system”.

� Extensive study of phase transitions in physics
(statistical mechanics).

� Extensive study of phase transitions in NP-complete
problems during the past decade.

Motivation and Goals

� Understand the “structure” of NP-complete
problems.

� Relate phase transitions to the average-case
performance of particular algorithms for NP-
complete problems.

NP-Complete Problems
� Introduce a “constrainedness” parameter to partition the space

of instances.
� Generate random instances at fixed parameter values.
� For some problems, probability of a “yes” instance abruptly

changes from 1 to 0 at some critical value.
� For some problems and some solvers, average

difficulty peaks sharply at the same critical value.

Main Example: 3-SAT

� Parameter: Ratio of number of clauses to number of
variables.

� Intuition: Low ratios are underconstrained, high ratios
are overconstrained.

� Critical Value: Experimental results suggest that it is
about 4.3 clauses to variables.

� Average Performance: DPLL procedure peaks
around 4.3

Phase Transition: advantages?

� Honestly, I don’t know
� It is interesting and scientifically respectable

Heavy Tails

� These slides come from Carla Gomes’s talk
� This is a perfect example of a successful theoretical

study, because
� It is interesting
� It leads to huge improvement in the resolution of practical

applications
� It is integrated into ILOG CPOptimizer

Median = 1!

sample
mean

number of runs

3500!

Erratic Behavior of Search Cost
Quasigroup Completion Problem
Erratic Behavior of Search Cost
Quasigroup Completion Problem

500

2000

Heavy-Tailed
Distributions
Heavy-Tailed
Distributions

�� …… infinite variance infinite variance …… infinite meaninfinite mean

� Introduced by Pareto in the 1920’s
� --- “probabilistic curiosity.”
� Examples: stock-market, earth-quakes, weather,...

Standard Distribution
(finite mean & variance)

Power Law Decay

Exponential Decay

466.0=α

319.0=α
153.0=α

Number backtracks (log)

(1
-F

(x
))

(l
og

)
U

ns
ol

ve
d

fr
ac

tio
n

1<α => Infinite mean

Heavy-Tailed Behavior in QCP Domain

18%
unsolved

0.002%
unsolved

Exploiting Heavy-Tailed
behavior
� Heavy Tailed behavior has been observed in several

domains: QCP, Graph Coloring, Planning,
Scheduling, Circuit synthesis, Decoding, etc.

� Consequence for algorithm design:
Use restarts runs to exploit the extreme variance
performance.

Exploiting Heavy-Tailed
behavior
� Restarts provably eliminate heavy-tailed behavior.
(Gomes et al. 97, Hoos 99, Horvitz 99, Huberman,

Lukose and Hogg 97, Karp et al 96, Luby et al.
93, Rish et al. 97)

� We implement this idea in ILOG CPOptimizer and it
works!

� Main advantage: it is much more robust

RestartsRestarts
70%

unsolved

1-
F

(x
)

U
ns

ol
ve

d
fr

ac
tio

n

Number backtracks (log)

no restarts

restart every 4 backtracks

250 (62 restarts)

0.001%
unsolved

Outline

� P = NP: role of CP?
� P ≠NP: shifting the exponential
� Theoretical research
� Applied research
� Benchmarking in CP
� Conclusion

Applied Research

� We don’t need ad-hoc solutions
� We need more general concept that could be

applied on applications
� Problem: how to find such a generalization?

Random Problems

� Pure random problem is useless in CP except for a
pure theoretical study

� There is no random problem in the world
� CP exploits the structure of the problems
� We can accept to generate some random data of

structured instances but this is quite different

Identification of hard problems

� Often, we focus our attention on some small
problems

� That’s reasonable but we have to be careful

Scheduling example

� “Is scheduling theory any useful to solve scheduling
problems ?” Subtitle of P. Baptiste’s invited talk at
CPAIOR-07

� “Scheduling Theory = drastic simplification of real life
problems”

� So much drastic that some considered problems
have absolutely no real meaning:

� problems where stands for
� = “Machine Environment” (single,parallel machines…)
� = “Jobs characteristics” (preemption, same processing

time …)
� = “Objective function” (makespan, minimum tardiness…)

Scheduling example

� problems with , , and values corresponding
to no problem of the real world.

� People invent problems on which they work, like if it
could have any interest

CP example

� We can see in papers a lot of problems which are
not realistic

� At CP2006 a paper about configuration presented
some experiments with only 20 values per domain,
and all variables known in advance.

� This is really strange knowing that configuration
problems are problems in which we cannot use a
reduction method.

Good problems

� Real world applications are difficult to solve
� Any resolution of a real world application even if it

looks simple deserves more attention
� Some subparts of real world problems, but realistic

subparts and not invented subparts
� Some problems represents very well some issues of

CP

Good problems

� Some problems are more interesting than some
others

� For instance, the Golomb ruler problem is more
interesting than the allinterval series

� Allinterval Series: Find a permutation (x1, ..., xn) of
{0,1,...,n-1} such that the list (abs(x2-x1), abs(x3-x2),
... , abs(xn - xn-1)) is a permutation of {1,2,...,n-1}.

� Golomb Ruler: a set of n integers 0=x1 < x2 < … < xn
s.t. the n(n-1)/2 differences (xk - xi) are distinct and
xn is minimized

� In the allinterval series there is no mix between the
alldiff constraint and the arithmetic constraints,
whereas such a mix exists in the Golomb ruler

Good problems

� Allinterval Series:
Find a permutation (x1, ..., xn) of {0,1,...,n-1} such
that the list (abs(x2-x1), abs(x3-x2), ... , abs(xn - xn-1))
is a permutation of {1,2,...,n-1}.

� Golomb Ruler:
a set of n integers 0=x1 < x2 < … < xn s.t. the
n(n-1)/2 differences (xk - xi) are distinct and xn is
minimized

� In the allinterval series there is no mix between the
alldiff constraint and the arithmetic constraints (2
separate alldiff + absolute difference constraints),
whereas such a mix exists in the Golomb ruler

AllInterval series

� See Puget & Regin’s note in the CSPLib
� 2 first solutions non symetrical:

� N=2000, #fails=0, time=32s (Pentium III, 800Mhz)
� N <100 #fails=0, time < 0.02s

� All solutions:
� N=14, #fails=670K, time=600s, #sol=9912

� This problem is not really difficult

64

Golomb Ruler

� x1,…,xn = variables; (xi-xj)= variables. Alldiff
involving all the variables.

� with CP difficult for n > 13.

65

Alldiff

|x1-x2|

|x1-x3|

|x2-x3|

x1

x2

x3

1

2

3

4

5

6

7

Not a good solution
Bad incorporation
of constraint
|xi – xj| in alldiff

66

Alldiff

|x1-x2|

|x1-x3|

|x2-x3|

x1

x2

x3

1

2

3

4

5

6

7

Not a good solution
Bad incorporation
of constraint
|xi – xj| in alldiff

Golomb Ruler

� Conclusion about the Golomb Ruler: we are not able
to integrate counting constraints and arithmetic
constraints

� If we want to solve such a problem:
� Either we are able to do that
� Or we find a completely different model

� The Golomb Ruler Problem is not a subproblem of
any problem, BUT it is a good representative of a
type of combination we are not able to solve

� Improving the resolution of Golomb Ruler will help
us to improve the resolution of a lot of problems

Outline

� P = NP: role of CP?
� P ≠NP: shifting the exponential
� Theoretical research
� Applied research
� Benchmarking in CP
� Conclusion

Benchmarking

� This is serious and difficult
� The name of the problem is not sufficient: e.g.

quasigroup completion problem, latin square. For
instance, it is very hard to find hard instances of the
latin square problem for small values (<100 or <
200). But there are some difficult instances for n=35

� When the problem is a common subproblem it is
better to consider instances that are not empty at the
beginning, because we could have a better picture
of the integration of the work into another application

� 2 examples: latin square and network design

Latin Square CompletionLatin Square Completion

32% preassignment

(Gomes & Selman 97)

Given a partial assignment of symbols to a Latin Square, can we
complete it without repeating symbols in a row/column?

Example:

Underlying structure is found in many real world applications:
Scheduling, Timetabling, Routing, Design of Experiments,

Cryptography.

Design of Statistical Experiments

� We have 5 treatments for growing beans. We want
to know what treatments are effective in increasing
yield, and by how much.

� The object is to eliminate bias and distribute the
treatments somewhat evenly over the test plot

� Latin Square Analysis of Variance

Design of Treatment Experiment
(5 Treatments: A,B,C,D,E)
Design of Treatment Experiment
(5 Treatments: A,B,C,D,E)

A D E BB C

C B A E D

D C BB A E

E A C D B

B E D C A

(*) Already in use in this sub(*) Already in use in this sub--plotplot

73

Round Robin Schedules

- 1- 6+ 4- 2+ 7- 5+ 38

+ 2+ 1- 5+ 3- 8+ 6- 47

- 3+ 8- 1- 4+ 2- 7+ 56

+ 4- 2+ 7+ 1- 3+ 8- 65

- 5+ 3- 8+ 6- 1- 2+ 74

+ 6- 4+ 2- 7+ 5+ 1- 83

- 7+ 5- 3+ 8- 6+ 4- 12

+ 8- 7+ 6- 5+ 4- 3+ 21

QCP Example Use: Routers in Fiber
Optic Networks

QCP Example Use: Routers in Fiber
Optic Networks

(Barry and Humblet 93, Cheung et al. 90, Green 92, Kumar et al. 99)

•each channel cannot be repeated in the same input port
(row constraints);
• each channel cannot be repeated in the same output
port (column constraints);

CONFLICT FREE
LATIN ROUTER

In
p

u
t

p
o

rt
s

Output ports

3

1

2

4

Input Port Output Port

1

2

4
3

Complexity

Better
characterization

beyond worst case?

Critically
constrained area

42% 50%20%

Complexity of Latin Square Completion

EASY AREA EASY AREACompleting LS is
NP-Complete

Gomes and Selman 97

Latin Square Completion

� This is a problem
� This is also a subproblem of a lot of problems
� From this benchmark some results have been

obtained: AlldiffMatrix and CardinalityMatrix
constraints

AlldiffMatrix constraint

a b
c a
d c
e d

Alldiff on rows and Alldiff on columns

AlldiffMatrix constraint

a b
c a
d c
e d

Alldiff on rows and Alldiff on columns

b,f

b,f

e,f

e,f

AlldiffMatrix constraint

a b
c a
d c
e d

Alldiff on rows and Alldiff on columns

b,f

b,f

e,f

e,f

Deductions: no

a..f a..f a..f a..f Alldiff on row cannot deduce anything

AlldiffMatrix constraint

a b
c a
d c
e d

Alldiff on rows and Alldiff on columns

b,f

b,f

e,f

e,f

Deductions: Possible. There are only two solutions for the columns

AlldiffMatrix constraint

a b
c a
d c
e d

Alldiff on rows and Alldiff on columns

b,f

b,f

e,f

e,f

Deductions: Possible. There are only two solutions for the columns

AlldiffMatrix constraint

a b
c a
d c
e d

Alldiff on rows and Alldiff on columns

b,f

b,f

e,f

e,f

Deductions: Possible. There are only two solutions for the columns
f e and b f
b f and f e

3 4

5

6

For rows 5 and 6, value f
Can belong only to column 3 and 4

We can remove f from the other
columns

AlldiffMatrix constraint

a b
c a
d c
e d

Alldiff on rows and Alldiff on columns

b,f

b,f

e,f

e,f

Deductions: Possible. There are only two solutions for the columns
f e and b f
b f and f e

3 4

5

6

For rows 5 and 6, value f
Can belong only to column 3 and 4

We can remove f from the other
columns

-f -f -f -f

-f -f -f -f

Cardinality Matrix Constraint

� Specific constraints which improves:
� the communication between cardinality variables
� the combination of rows and columns

� We also proposes a simple filtering algorithm for the
cardinality variables

Cardinality Matrix Constraint

� This is a global constraint which is modeled by the
conjunction of other global constraints. There is no
specific filtering algorithm but a combination of
filtering algorithm

� For the alldiffMatrix constraint the idea is quite
simple and this idea is generalized for the cardinality
matrix constraint

Alldiff on symbols
C1

C2

C3

C4

C5

C6

R1

R2

R3

R4

R5

R6

For every symbol an alldiff constraint is defined
If symbol f can be in cell Ci,Rj then there is an arc between Ci and Ri

a b
c a
d c
e d

5

6

3 4

Alldiff on symbols
C1

C2

C3

C4

C5

C6

R1

R2

R3

R4

R5

R6

For every symbol an alldiff constraint is defined
If symbol f can be in cell Ci,Rj then there is an arc between Ci and Ri

a b
c a
d c
e d

5

6

3 4

Results
dom=dom min
lessO= min occurence
maxB= max var instantiate

Benchmarking

� I worked with C. LePape on the ROCOCO project
� C. LePape is very good to define benchmarks
� T. Benoist remind in his invited talk at CPAIOR-07

and JFPC-07 that some applications of Claude are
still worldwide used to manage some part of the
construction of buildings by Bouygues

� This is due to intensive benchmarking with a set of
realistic benchmarks.

A Case Study in Network Design

� Very good example and benchmark:
� To illustrate the advantages and drawbacks of different

optimization techniques
� To illustrate the improvements that can be thought of when

things do not work well
� To test new ideas

The ROCOCO Project (1)

� France Telecom R&D ISE

� Problem and benchmark definition
� Algorithm validation

� Research laboratories: INRIA Numopt, LRI Orsay,
PRiSM Versailles, Evry, …

� Lower bounds: Lagrangean relaxation, column
generation, cuts

� Optimization techniques: genetic algorithms

� ILOG

� Optimization techniques: constraint programming,
mixed integer programming, column generation

The Problem (1)

� Routing of Communications
� Mono-routing: each demand from a point p to a point q

must follow a unique path
� Dimensioning of Links

� The capacity of each link must exceed the sums of the
demands going through the link

� Additional Constraints
� Depend on the customer for whom the network is

designed

The Problem (2)
Data:

• Customer traffic
demands

• Possible links,
capacities and
costs

S1 S2

S3

S4

S1
S2

S3

S4

Result:
� Minimal cost

network able
to
simultaneousl
y respond to
all the
demands

� Route for
each demand

27Kb/s

115Kb/s

Rented capacity
256Kb/s

The Problem (3)

� Cost minimization principle
� Traffic demands share link capacities

S1 S2

S3

512Kb/s
128Kb/s

115Kb/s

256Kb/s

The Problem (4)

Demands share links

� ∑ demandsi→j ≤ capacityi→j

� Technological constraints

256Kb/s

64Kb/s
64Kb/s
64Kb/s
64Kb/s

128Kb/s

128Kb/s

64Kb/s
64Kb/s

128Kb/s

The Problem (5)

� Side constraints
� Quality of service
� Reuse of existing equipment (limit on the number of ports,

maximal traffic at a node)

� Commercial and legal constraints
� Possible future network evolution
� Network management (e.g., traffic concentration)

64Kb/s
64Kb/s
64Kb/s
64Kb/s

Benchmark Elaboration

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Price

2,4kbit/s 4,8kbit/s 9,6kbit/s 19,2kbit/s 64kbit/s 128kbit/s 256kbit/s 1920kbit/s1984kbit/s 2048kbit/s

Capacity

11km
50km
400km

An Extensive Benchmark

� Built to test algorithm robustness
� 21 instances organized in 3 series of 7

� Size
� 4 to 25 nodes
� 2*6 to 2*300 arcs
� 2 to 25 possible levels of capacity for each arc (some levels being

dominated depending on the constraints)
� 12 to 462 commodities (demands)

� Optional constraints
� 6 optional constraints, leading to 21*64 = 1344 problems

� Numerical characteristics

Optional Constraints

� Security: some commodities to be secured cannot go through unsecured nodes
and links

� No line multiplication: at most one line per arc.

� Symmetric routing: demands from node p to node q and demands from node q
to node p are routed on symmetric paths.

� Number of bounds (hops): the number of arcs of the path used to route a
given demand is limited.

� Number of ports: the number of links entering into or leaving from a node is
limited.

� Maximal traffic: the total traffic managed by a given node is limited.

64Kb/s
64Kb/s
64Kb/s
64Kb/s

Numerical Characteristics (1)
A10

0
5000

10000
15000
20000
25000
30000
35000

0 100 200 300 400 500 600

Capacity

C
o

st

B10

0

1000

2000

3000

4000

0 500 1000 1500 2000 2500

Capacity

C
o

st

C10

0

500

1000

1500

2000

2500

0 10000 20000 30000 40000

Capacity

C
o

st

B10-MULT

0

5000

10000

15000

20000

0 2000 4000 6000 8000 10000 12000

Capacity

C
o

st

N
um

erical C
haracteristics (2)

A
10

0 10 20 30 40 50 60 70

1

6

11

16

21

26

31

36

41

46

51

56

61

Demand

B
10

0 50

100

150

200

250

1

8

15

22

29

36

43

50

57

64

71

78

85

Demand

C
10

0

2000

4000

6000

8000

10000

12000

14000

1

6

11

16

21

26

31

36

41

46

51

56

61

66

Demand

B
10

0 50

100

150

200

250

1

5

9

13

17

21

25

29

33

37

41

45

Demand

Particular Cases

� Loop network (C10)
� Unidirectional lines (C11)
� Extension of an existing network (C16)
� Several commodities (with different « security » and « number

of hops » constraints) between different sites and a central site
(C20)

Input File (1)
4 6 12

0 256 1 2 2

1 256 0 256 256

2 256 1 2 2

3 256 0 256 256

0 1 3 64 64 6423 0 3 0 128 128 11853 0 1 1 256 256 22779 0 1 0

0 2 3 64 64 5496 0 3 0 128 128 9999 0 1 1 256 256 19071 0 1 0

0 3 3 64 64 3865 0 3 0 128 128 6831 0 1 1 256 256 12829 0 1 0

1 2 3 64 64 4698 0 3 0 128 128 8403 0 1 1 256 256 15879 0 1 0

1 3 3 64 64 5838 0 3 0 128 128 10683 0 1 1 256 256 20439 0 1 0

2 3 3 64 64 4884 0 3 0 128 128 8775 0 1 1 256 256 16623 0 1 0

Input File (2)

0 1 65 2 1

1 0 65 2 1

0 2 23 2 0

2 0 23 2 0

0 3 14 2 0

3 0 14 2 0

1 2 42 2 0

2 1 42 2 0

1 3 7 2 0

3 1 7 2 0

2 3 4 2 0

3 2 4 2 0

Solution File (Symmetric Case)

6 6 36226

0 1 1 256 256 22779 0

0 2 0 0 0 0 0

0 3 1 64 64 3865 0

1 2 1 64 64 4698 0

1 3 0 0 0 0 0

2 3 1 64 64 4884 0

0 1 65 65 1 0 1

0 2 23 23 2 0 3 2

0 3 14 14 1 0 3

2 1 42 42 1 2 1

3 1 7 7 2 3 0 1

3 2 4 4 1 3 2

Comparison / Other Benchmarks

ROCOCO Gabrel et al. Rothlauf et al. Gendron & Crainic
Nodes 4 to 25 8 to 20 15 to 26 20 to 100
Arcs 2*6 to 2*300 12 to 37 210 to 650 230 to 1600
Capacities 2 to 5*5 6 (average) 3 to 5 1
Commodities 12 to 462 56 to 380 15 to 240 10 to 200
Routing Mono-routing Multi-flow Tree Multi-flow
Cost functions Scale Scale Scale Fix + variable cost
Constraints Security Tree Limits for each

Symmetry commodity on
Number of arcs each arc
Number of ports
Node capacities
Existing network

Instances 21*64 = 1344 50 4 18

Rococo: what do we learn?

� The basic entity of this problem is a path and not the
arc of the path

� This is certainly a good information for some other
problems of the same type

� We developed a graph VAR API

Benchmark of different domains

� It is not always easy to use benchmarks of other
domains in CP

� Because CP exploits the structure of the problem
and not the other technique. We need the original
problem to try different kind of models. This is not
the case for SAT

Benchmark of different domains

� We have a problem to compare the results with
other domains, because some instances are hard in
CP and easy for the other domains and conversly:
� 2 examples: Sports scheduling (vs MIP) and Latin Square

Completion (vs SAT)
� SAT is able to solve some very hard instances of Latin

Square Completion but cannot solve empty Latin Square!
Or Latin Square of Size 70

� Difficult to define an hard problem, because a
problem is hard in respect to one technology

General considerations

� When solving a problem in CP:
� Potential performance gain:

� data structure optimization (code): x 10
� search strategies: x 1 000
� model : x 1 000 000

� Repartition of effort for ROCOCO
� data structure optimization (code): 75 %
� search strategies: 20 %
� model: 5 %

General considerations

� When solving a problem in CP:
� Potential performance gain:

� data structure optimization (code): x 10
� search strategies: x 1 000
� model : x 1 000 000

� Repartition of effort for ROCOCO
� data structure optimization (code): 75 %
� search strategies: 20 %
� model: 5 %

� Objective of CP Optimizer
� data structure optimization (code): 0 %
� search strategies: 10 %
� model: 90 %

Conclusion

� If P = NP then CP has great chance to disappear
� If P ≠ NP then whe can only shift the exponential
� Either we do theoretical research or we do applied

research

Conclusion

� Theoretical research should be based on something
scientifically strong and not be only an experimental
research on random problems.

� Doing something which has no real world application
is not doing theoretical research. It is fortunately
more complex than that

� Don’t do NAAR: Non Applicable Applied Research!
(C. Allegre from someone else)

Conclusion

� Applied research should be based on realistic
problems. They can be small but they have to
correspond either to a known issue or to a
problem/subproblem. They also should not be
solved by a simple and known CP model.

� Don’t forget that if we refuse applications then only
the theoretical part remains!

