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Tall tree can’t grow to the sky



In CP

� Tall tree grow to the sky!
� A lot of problems addressed by CP have an 

exponential complexity 
� In fact, it depends on P vs NP



Outline

� P = NP: role of CP?
� P ≠NP: shifting the exponential
� Theoretical research
� Applied research
� Benchmarking in CP
� Conclusion
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P vs NP

� P=NP or P≠NP
� Consider the two possibilities in regards to the 

impact to CP



P = NP

� If a general algorithm for solving NP-Complete 
Problems exists then what is advantage of CP ?

� There are several reasons to believe that our 
community is going to disappear:
� All the known polynomial algorithms have not a huge 

complexity (the max is currently close to n^10)
� CP is not able to solve polynomial instances in polynomial 

time. There is no guarantee about that.



P = NP

� Fortunately, there are also some hopes:
� A non constructive proof exists for proving a problem is in 

P (P. Jegou told me that, ACM 85 paper) 
� A very large constant is possible
� The degree of the polynom can be very large (n^1000)

� This would mean that the general algorithm would 
not be usable in practice 



Outline

� P = NP: role of CP?
� P ≠≠≠≠NP: shifting the exponential
� Theoretical research
� Applied research
� Benchmarking in CP
� Conclusion



P ≠ NP

� Ok, we cannot avoid an exponential behavior
� For some instances, an NP Complete Problem will 

required an exponential time to be solved
� So, our only hope is to shift the exponential such 

that the problem is solvable for a size and a time 
that are acceptable



Shifting the exponential
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Shifting the exponential
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The problem

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3

• n teams and n-1 weeks and n/2 periods
• every two teams play each other exactly once
• every team plays one game in each week
• no team plays more than twice in the same period



CP model: variables

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3

For each slot: 2 variables represent the teams 
and 1 variable represents the match are defined

1 vs 6

T33a variable (T33a=6)
T33h variable (T33h=1)

M33 variable (M33=12)Mij=1 <=> 0 vs 1 or 1 vs 0
Mij=12 <=> 1 vs 6 or 6 vs1



CP model: T variables

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 T11h vs
T11a

T12h vs
T12a

T13h vs
T13a

T14h vs
T14a

T15h vs
T15a

T16h vs
T16a

T17h vs
T17a

Period 2 T21h vs
T21a

T22h vs
T22a

T23h vs
T23a

T24h vs
T24a

T25h vs
T25a

T26h vs
T26a

T27h vs
T27a

Period 3 T31h vs
T31a

T32h vs
T32a

T33h vs
T33a

T34h vs
T34a

T35h vs
T35a

T36h vs
T36a

T37h vs
T37a

Period 4 T41h vs
T41a

T42h vs
T42a

T43h vs
T43a

T44h vs
T44a

T45h vs
T45a

T46h vs
T46a

T47h vs
T47a

D(Tija)=[1,n-1]
D(Tijh)=[0,n-2]

Tijh < Tija



CP model: M variables

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

D(Mij)=[1,n(n-1)/2]



CP model: constraints

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

•• n teams and nn teams and n--1 weeks and n/2 periods1 weeks and n/2 periods
• every two teams play each other exactly once
•• every team plays one game in each weekevery team plays one game in each week
•• no team plays more than twice in the same periodno team plays more than twice in the same period

Alldiff constraints defined on M variables



CP model: constraints

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 T11h vs
T11a

T12h vs
T12a

T13h vs
T13a

T14h vs
T14a

T15h vs
T15a

T16h vs
T16a

T17h vs
T17a

Period 2 T21h vs
T21a

T22h vs
T22a

T23h vs
T23a

T24h vs
T24a

T25h vs
T25a

T26h vs
T26a

T27h vs
T27a

Period 3 T31h vs
T31a

T32h vs
T32a

T33h vs
T33a

T34h vs
T34a

T35h vs
T35a

T36h vs
T36a

T37h vs
T37a

Period 4 T41h vs
T41a

T42h vs
T42a

T43h vs
T43a

T44h vs
T44a

T45h vs
T45a

T46h vs
T46a

T47h vs
T47a

• n teams and n-1 weeks and n/2 periods
• every two teams play each other exactly once
• every team plays one game in each week
• no team plays more than twice in the same period

For each week w:
Alldiff constraint defined
on {Tpwh, p=1..4} U {Tpwa, p=1..4} 



CP model: constraints

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 T11h vs
T11a

T12h vs
T12a

T13h vs
T13a

T14h vs
T14a

T15h vs
T15a

T16h vs
T16a

T17h vs
T17a

Period 2 T21h vs
T21a

T22h vs
T22a

T23h vs
T23a

T24h vs
T24a

T25h vs
T25a

T26h vs
T26a

T27h vs
T27a

Period 3 T31h vs
T31a

T32h vs
T32a

T33h vs
T33a

T34h vs
T34a

T35h vs
T35a

T36h vs
T36a

T37h vs
T37a

Period 4 T41h vs
T41a

T42h vs
T42a

T43h vs
T43a

T44h vs
T44a

T45h vs
T45a

T46h vs
T46a

T47h vs
T47a

• n teams and n-1 weeks and n/2 periods
• every two teams play each other exactly once
• every team plays one game in each week
• no team plays more than twice in the same period

For each period p:
Global cardinality constraint defined on
{Tpwh, w=1..7} U {Tpwa, w=1..7}
every team t is taken at most 2



CP model: constraints

� For each slot the two T variables and the M variable must be linked together; 
example:
M12 = game T12h vs T12a 

� For each slot we add Cij a ternary constraint defined on the two T variables 
and the M variable; example:
C12 defined on {T12h,T12a,M12}

� Cij are defined by the list of allowed tuples:
for n=4: {(0,1,1),(0,2,2),(0,3,3),(1,2,4),(1,3,5),(2,3,6)}
(1,2,4) means game 1 vs 2 is the game number 4

� All these constraints have the same list of allowed tuples
� Efficient arc consistency algorithm for this kind of constraint is known



First model

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7Dummy

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4 . vs .

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6 . vs .

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7 . vs .

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3 . vs .

Introduction of a dummy column



First model

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7Dummy

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4 5 vs 6

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6 . vs .

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7 . vs .

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3 . vs .

Introduction of a dummy column

We can prove that:
• each team occurs exactly twice for each period



First model

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7Dummy

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4 5 vs 6

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6 2 vs 4

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7 1 vs 3

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3 0 vs 7

Introduction of a dummy column

We can prove that:
• each team occurs exactly twice for each period
• each team occurs exactly once in the dummy column



First model: strategies

� Break symmetries: 0 vs w appears in week w
� Teams are instantiated:

- the most instantiated team is chosen
- the slots that has the less remaining possibilities 
(Tijh or Tija is minimal) is instantiated with that team



First model: results

# teams # fails Time (in s)

4 2 0.01

6 12 0.03

8 32 0.08

10 417 0.8

12 41 0.2
14 3,514 9.2

16 1,112 4.2

18 8,756 36

20 72,095 338

22 6,172,672 10h

24 6,391,470 12h

MIPLIB

MIP solver limit



Second model

� Break symmetry: 0 vs 1 is the first game of the 
dummy column



Second model

� Break symmetry: 0 vs 1 is the first game of the 
dummy column

� 1) Find a round-robin. Define all the games for each 
column (except for the dummy)
- Alldiff constraint on M is satisfied
- Alldiff constraint for each week is satisfied



Second model

� Break symmetry: 0 vs 1 is the first game of the 
dummy column

� 1) Find a round-robin. Define all the games for each 
column (except for the dummy)
- Alldiff constraint on M is satisfied
- Alldiff constraint for each week is satisfied

� 2) set the games in order to satisfy constraints on 
periods. If no solution go to 1)



Second model: strategy

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

M variables are instantiated
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Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27
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Period 4 M41 M42 M43 M44 M45 M46 M47

M variables are instantiated
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Second model: strategy

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37
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M variables are instantiated



Second model: strategy

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

M variables are instantiated



Second model: results

# teams # fails Time (in s)

8 10 0.01

10 24 0.06

12 58 0.2

14 21 0.2

16 182 0.6
18 263 0.9

20 226 1.2

24 2702 10.5

26 5,683 26.4

30 11,895 138

40 2,834,754 6h

MIPLIB

MIP limit

First model limit



First model: results

# teams # fails Time (in s)

4 2 0.01

6 12 0.03

8 32 0.08

10 417 0.8

12 41 0.2
14 3,514 9.2

16 1,112 4.2

18 8,756 36

20 72,095 338

22 6,172,672 10h

24 6,391,470 12h

MIPLIB

MIP solver limit



P ≠ NP

� We have only two reasonable possibilities:
� We are doing pure theoretical research
� We are trying to “solve” existing problems

� Working on the middle topics has no real meaning.



Outline

� P = NP: role of CP?
� P ≠NP: shifting the exponential
� Theoretical research
� Applied research
� Benchmarking in CP
� Conclusion



Theoretical Research

� IMHO, the work of C. Gomes and B. Selman is an 
excellent example of good theoretical study.

� I am not a specialist of this kind of research, so I can 
give my opinion about it ☺



Phase Transitions

� A phase transition is an abrupt change in the 
behavior of a property of a “system”.

� Extensive study of phase transitions in physics 
(statistical mechanics).

� Extensive study of phase transitions in NP-complete 
problems during the past decade.



Motivation and Goals

� Understand the “structure” of NP-complete 
problems.

� Relate phase transitions to the average-case 
performance of particular algorithms for NP-
complete problems.



NP-Complete Problems
� Introduce a  “constrainedness” parameter to partition  the space 

of instances.
� Generate  random instances at fixed  parameter values.
� For some problems,  probability of a “yes” instance  abruptly  

changes from 1 to 0 at some critical value.
� For some problems and some solvers, average

difficulty peaks sharply at the same critical value.



Main Example: 3-SAT

� Parameter: Ratio of  number of clauses to number of 
variables.

� Intuition: Low ratios are underconstrained, high ratios 
are overconstrained.

� Critical Value: Experimental results suggest that it is 
about 4.3 clauses to variables.

� Average Performance: DPLL procedure peaks 
around 4.3





Phase Transition: advantages?

� Honestly, I don’t know
� It is interesting and scientifically respectable



Heavy Tails

� These slides come from Carla Gomes’s talk
� This is a perfect example of a successful theoretical 

study, because
� It is interesting
� It leads to huge improvement in the resolution of practical 

applications
� It is integrated into ILOG CPOptimizer



Median = 1!

sample
mean

number of runs

3500!

Erratic Behavior of Search Cost
Quasigroup Completion Problem
Erratic Behavior of Search Cost
Quasigroup Completion Problem

500

2000



Heavy-Tailed 
Distributions
Heavy-Tailed 
Distributions

�� …… infinite variance infinite variance …… infinite meaninfinite mean

� Introduced by Pareto in the 1920’s
� --- “probabilistic curiosity.”
� Examples: stock-market, earth-quakes, weather,...



Standard Distribution
(finite mean & variance)

Power Law Decay

Exponential  Decay
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Exploiting Heavy-Tailed 
behavior
� Heavy Tailed behavior has been observed in several 

domains: QCP, Graph Coloring, Planning, 
Scheduling, Circuit synthesis, Decoding, etc.

� Consequence for algorithm design: 
Use restarts runs to exploit the extreme variance
performance.



Exploiting Heavy-Tailed 
behavior
� Restarts provably eliminate heavy-tailed behavior.
(Gomes et al. 97, Hoos 99, Horvitz 99, Huberman, 

Lukose and Hogg 97, Karp et al  96, Luby et al.  
93, Rish et al. 97)

� We implement this idea in ILOG CPOptimizer and it 
works!

� Main advantage: it is much more robust



RestartsRestarts
70%

unsolved

1-
F

(x
)

U
ns

ol
ve

d 
fr

ac
tio

n

Number backtracks (log)
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250 (62 restarts)
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unsolved



Outline

� P = NP: role of CP?
� P ≠NP: shifting the exponential
� Theoretical research
� Applied research
� Benchmarking in CP
� Conclusion



Applied Research

� We don’t need ad-hoc solutions
� We need more general concept that could be 

applied on applications
� Problem: how to find such a generalization?



Random Problems

� Pure random problem is useless in CP except for a 
pure theoretical study

� There is no random problem in the world
� CP exploits the structure of the problems
� We can accept to generate some random data of 

structured instances but this is quite different 



Identification of hard problems

� Often, we focus our attention on some small 
problems

� That’s reasonable but we have to be careful



Scheduling example

� “Is scheduling theory any useful to solve scheduling 
problems ?” Subtitle of P. Baptiste’s invited talk at 
CPAIOR-07

� “Scheduling Theory = drastic simplification of real life 
problems”

� So much drastic that some considered problems 
have absolutely no real meaning:

� problems where stands for
� = “Machine Environment” (single,parallel machines…)
� = “Jobs characteristics” (preemption, same processing 

time …)
� = “Objective function” (makespan, minimum tardiness…)



Scheduling example

� problems with , , and values corresponding 
to no problem of the real world.

� People invent problems on which they work, like if it 
could have any interest



CP example

� We can see in papers a lot of problems which are 
not realistic

� At CP2006 a paper about configuration presented 
some experiments with only 20 values per domain, 
and all variables known in advance.

� This is really strange knowing that configuration 
problems are problems in which we cannot use a 
reduction method.



Good problems

� Real world applications are difficult to solve
� Any resolution of a real world application even if it 

looks simple deserves more attention
� Some subparts of real world problems, but realistic 

subparts and not invented subparts 
� Some problems represents very well some issues of 

CP



Good problems

� Some problems are more interesting than some 
others

� For instance, the Golomb ruler problem is more 
interesting than the allinterval series

� Allinterval Series: Find a permutation (x1, ..., xn) of 
{0,1,...,n-1} such that the list (abs(x2-x1), abs(x3-x2), 
... , abs(xn - xn-1)) is a permutation of {1,2,...,n-1}.

� Golomb Ruler: a set of n integers 0=x1 < x2 < … < xn
s.t. the n(n-1)/2 differences (xk - xi) are distinct and 
xn is minimized

� In the allinterval series there is no mix between the 
alldiff constraint and the arithmetic constraints, 
whereas such a mix exists in the Golomb ruler



Good problems

� Allinterval Series: 
Find a permutation (x1, ..., xn) of {0,1,...,n-1} such 
that the list (abs(x2-x1), abs(x3-x2), ... , abs(xn - xn-1)) 
is a permutation of {1,2,...,n-1}.

� Golomb Ruler: 
a set of n integers 0=x1 < x2 < … < xn s.t. the 
n(n-1)/2 differences (xk - xi) are distinct and xn is 
minimized

� In the allinterval series there is no mix between the 
alldiff constraint and the arithmetic constraints (2 
separate alldiff + absolute difference constraints), 
whereas such a mix exists in the Golomb ruler



AllInterval series

� See Puget & Regin’s note in the CSPLib
� 2 first solutions non symetrical:

� N=2000, #fails=0, time=32s (Pentium III, 800Mhz)
� N <100 #fails=0, time < 0.02s

� All solutions:
� N=14, #fails=670K, time=600s, #sol=9912

� This problem is not really difficult



64

Golomb Ruler

� x1,…,xn = variables; (xi-xj)= variables. Alldiff 
involving all the variables.

� with CP difficult for n > 13.
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Alldiff

|x1-x2|

|x1-x3|

|x2-x3|

x1

x2

x3

1

2

3

4

5

6

7

Not a good solution
Bad incorporation
of constraint
|xi – xj| in alldiff
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Alldiff

|x1-x2|

|x1-x3|

|x2-x3|

x1

x2

x3

1

2

3

4

5

6

7

Not a good solution
Bad incorporation
of constraint
|xi – xj| in alldiff



Golomb Ruler

� Conclusion about the Golomb Ruler: we are not able 
to integrate counting constraints and arithmetic 
constraints

� If we want to solve such a problem:
� Either we are able to do that
� Or we find a completely different model

� The Golomb Ruler Problem is not a subproblem of 
any problem, BUT it is a good representative of a 
type of combination we are not able to solve

� Improving the resolution of Golomb Ruler will help 
us to improve the resolution of a lot of problems  



Outline

� P = NP: role of CP?
� P ≠NP: shifting the exponential
� Theoretical research
� Applied research
� Benchmarking in CP
� Conclusion



Benchmarking

� This is serious and difficult
� The name of the problem is not sufficient: e.g. 

quasigroup completion problem, latin square. For 
instance, it is very hard to find hard instances of the 
latin square problem for small values (<100 or < 
200). But there are some difficult instances for n=35

� When the problem is a common subproblem it is 
better to consider instances that are not empty at the 
beginning, because we could have a better picture 
of the integration of the work into another application

� 2 examples: latin square and network design



Latin Square CompletionLatin Square Completion

32% preassignment

(Gomes & Selman 97)

Given a partial assignment of symbols to a Latin Square, can we 
complete it without repeating symbols in a row/column?

Example:

Underlying structure is found in many real world applications: 
Scheduling, Timetabling, Routing, Design of Experiments, 

Cryptography.



Design of Statistical Experiments

� We have 5 treatments for growing beans. We want 
to know what   treatments are effective in increasing 
yield, and by how much.

� The object is to eliminate bias and distribute the 
treatments somewhat evenly over the test plot

� Latin Square Analysis of Variance



Design of Treatment Experiment
(5 Treatments: A,B,C,D,E) 
Design of Treatment Experiment
(5 Treatments: A,B,C,D,E) 

A                D                 E       BB C

C                 B                A                  E         D

D                C                BB A                 E

E               A C                  D                 B

B                E                  D                 C         A

(*)  Already in use in this sub(*)  Already in use in this sub--plotplot
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Round Robin Schedules

- 1- 6+ 4- 2+ 7- 5+ 38

+ 2+ 1- 5+ 3- 8+ 6- 47

- 3+ 8- 1- 4+ 2- 7+ 56

+ 4- 2+ 7+ 1- 3+ 8- 65

- 5+ 3- 8+ 6- 1- 2+ 74

+ 6- 4+ 2- 7+ 5+ 1- 83

- 7+ 5- 3+ 8- 6+ 4- 12

+ 8- 7+ 6- 5+ 4- 3+ 21



QCP Example Use: Routers in Fiber 
Optic Networks

QCP Example Use: Routers in Fiber 
Optic Networks

(Barry and Humblet 93, Cheung et al. 90, Green 92, Kumar et al. 99)

•each channel  cannot be repeated in the same input port  
(row constraints);
• each channel cannot be repeated in  the same output 
port (column constraints);

CONFLICT FREE
LATIN ROUTER

In
p

u
t 

p
o

rt
s

Output ports

3

1

2

4

Input Port Output Port

1

2

4
3



Complexity

Better 
characterization

beyond worst case?

Critically 
constrained area

42% 50%20%

Complexity of Latin Square Completion

EASY   AREA EASY  AREACompleting LS is 
NP-Complete

Gomes and Selman 97



Latin Square Completion

� This is a problem
� This is also a subproblem of a lot of problems
� From this benchmark some results have been 

obtained: AlldiffMatrix and CardinalityMatrix
constraints 



AlldiffMatrix constraint

a    b
c    a
d    c
e    d

Alldiff on rows and Alldiff on columns



AlldiffMatrix constraint

a    b
c    a
d    c
e    d

Alldiff on rows and Alldiff on columns

b,f

b,f

e,f

e,f



AlldiffMatrix constraint

a    b
c    a
d    c
e    d

Alldiff on rows and Alldiff on columns

b,f

b,f

e,f

e,f

Deductions: no

a..f a..f a..f a..f Alldiff on row cannot deduce anything



AlldiffMatrix constraint

a    b
c    a
d    c
e    d

Alldiff on rows and Alldiff on columns

b,f

b,f

e,f

e,f

Deductions: Possible. There are only two solutions for the columns



AlldiffMatrix constraint

a    b
c    a
d    c
e    d

Alldiff on rows and Alldiff on columns

b,f

b,f

e,f

e,f

Deductions: Possible. There are only two solutions for the columns



AlldiffMatrix constraint

a    b
c    a
d    c
e    d

Alldiff on rows and Alldiff on columns

b,f

b,f
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Cardinality Matrix Constraint

� Specific constraints which improves:
� the communication between cardinality variables
� the combination of rows and columns

� We also proposes a simple filtering algorithm for the 
cardinality variables



Cardinality Matrix Constraint

� This is a global constraint which is modeled by the 
conjunction of other global constraints. There is no 
specific filtering algorithm but a combination of 
filtering algorithm

� For the alldiffMatrix constraint the idea is quite 
simple and this idea is generalized for the cardinality 
matrix constraint 
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Results
dom=dom min
lessO= min occurence
maxB= max var instantiate



Benchmarking

� I worked with C. LePape on the ROCOCO project
� C. LePape is very good to define benchmarks
� T. Benoist remind in his invited talk at CPAIOR-07 

and JFPC-07 that some applications of Claude are 
still worldwide used to manage some part of the 
construction of buildings by Bouygues

� This is due to intensive benchmarking with a set of 
realistic benchmarks. 



A Case Study in Network Design

� Very good example and benchmark:
� To illustrate the advantages and drawbacks of different 

optimization techniques
� To illustrate the improvements that can be thought of when 

things do not work well
� To test new ideas



The ROCOCO Project (1)

� France Telecom R&D ISE

� Problem and benchmark definition
� Algorithm validation

� Research laboratories: INRIA Numopt, LRI Orsay, 
PRiSM Versailles, Evry, …

� Lower bounds: Lagrangean relaxation, column 
generation, cuts

� Optimization techniques: genetic algorithms

� ILOG

� Optimization techniques: constraint programming, 
mixed integer programming, column generation



The Problem (1)

� Routing of Communications
� Mono-routing: each demand from a point p to a point q 

must follow a unique path
� Dimensioning of Links

� The capacity of each link must exceed the sums of the 
demands going through the link

� Additional Constraints
� Depend on the customer for whom the network is 

designed



The Problem (2)
Data:

• Customer traffic 
demands

• Possible links, 
capacities and 
costs

S1 S2

S3

S4

S1
S2

S3

S4

Result:
� Minimal cost 

network able 
to 
simultaneousl
y respond to 
all the 
demands

� Route for 
each demand

27Kb/s

115Kb/s

Rented capacity 
256Kb/s



The Problem (3)

� Cost minimization principle
� Traffic demands share link capacities

S1 S2

S3

512Kb/s
128Kb/s

115Kb/s

256Kb/s



The Problem (4)

Demands share links

� ∑ demandsi→j ≤ capacityi→j

� Technological constraints

256Kb/s

64Kb/s
64Kb/s
64Kb/s
64Kb/s

128Kb/s

128Kb/s

64Kb/s
64Kb/s

128Kb/s



The Problem (5)

� Side constraints
� Quality of service
� Reuse of existing equipment (limit on the number of ports, 

maximal traffic at a node)

� Commercial and legal constraints
� Possible future network evolution
� Network management (e.g., traffic concentration)

64Kb/s
64Kb/s
64Kb/s
64Kb/s



Benchmark Elaboration
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An Extensive Benchmark

� Built to test algorithm robustness
� 21 instances organized in 3 series of 7

� Size
� 4 to 25 nodes
� 2*6 to 2*300 arcs
� 2 to 25 possible levels of capacity for each arc (some levels being 

dominated depending on the constraints) 
� 12 to 462 commodities (demands)

� Optional constraints
� 6 optional constraints, leading to 21*64 = 1344 problems

� Numerical characteristics



Optional Constraints

� Security: some commodities to be secured cannot go through unsecured nodes 
and links

� No line multiplication: at most one line per arc.

� Symmetric routing: demands from node p to node q and demands from node q 
to node p are routed on symmetric paths.

� Number of bounds (hops): the number of arcs of the path used to route a 
given demand is limited.

� Number of ports: the number of links entering into or leaving from a node is 
limited.

� Maximal traffic: the total traffic managed by a given node is limited.

64Kb/s
64Kb/s
64Kb/s
64Kb/s



Numerical Characteristics (1)
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Particular Cases

� Loop network (C10)
� Unidirectional lines (C11)
� Extension of an existing network (C16)
� Several commodities (with different « security » and « number 

of hops » constraints) between different sites and a central site 
(C20)



Input File (1)
4 6 12

0 256 1   2   2

1 256 0 256 256

2 256 1   2   2

3 256 0 256 256

0 1 3 64 64 6423 0 3 0 128 128 11853 0 1 1 256 256 22779 0 1 0

0 2 3 64 64 5496 0 3 0 128 128  9999 0 1 1 256 256 19071 0 1 0

0 3 3 64 64 3865 0 3 0 128 128  6831 0 1 1 256 256 12829 0 1 0

1 2 3 64 64 4698 0 3 0 128 128  8403 0 1 1 256 256 15879 0 1 0

1 3 3 64 64 5838 0 3 0 128 128 10683 0 1 1 256 256 20439 0 1 0

2 3 3 64 64 4884 0 3 0 128 128  8775 0 1 1 256 256 16623 0 1 0



Input File (2)

0 1 65 2 1

1 0 65 2 1

0 2 23 2 0

2 0 23 2 0

0 3 14 2 0

3 0 14 2 0

1 2 42 2 0

2 1 42 2 0

1 3  7 2 0

3 1  7 2 0

2 3  4 2 0

3 2  4 2 0



Solution File (Symmetric Case)

6 6 36226

0 1 1 256 256 22779 0

0 2 0 0 0 0 0

0 3 1 64 64 3865 0

1 2 1 64 64 4698 0

1 3 0 0 0 0 0

2 3 1 64 64 4884 0

0 1 65 65 1 0 1 

0 2 23 23 2 0 3 2 

0 3 14 14 1 0 3 

2 1 42 42 1 2 1 

3 1 7 7 2 3 0 1 

3 2 4 4 1 3 2 



Comparison / Other Benchmarks

ROCOCO Gabrel et al.  Rothlauf et al. Gendron & Crainic  
Nodes 4 to 25 8 to 20 15 to 26 20 to 100
Arcs 2*6 to 2*300 12 to 37 210 to 650 230 to 1600
Capacities 2 to 5*5 6 (average) 3 to 5 1
Commodities 12 to 462 56 to 380 15 to 240 10 to 200
Routing Mono-routing Multi-flow Tree Multi-flow
Cost functions Scale Scale Scale Fix + variable cost
Constraints Security Tree Limits for each

Symmetry commodity on
Number of arcs each arc
Number of ports
Node capacities
Existing network

Instances 21*64 = 1344 50 4 18



Rococo: what do we learn?

� The basic entity of this problem is a path and not the 
arc of the path

� This is certainly a good information for some other 
problems of the same type

� We developed a graph VAR API



Benchmark of different domains

� It is not always easy to use benchmarks of other 
domains in CP

� Because CP exploits the structure of the problem 
and not the other technique. We need the original 
problem to try different kind of models. This is not 
the case for SAT



Benchmark of different domains

� We have a problem to compare the results with 
other domains, because some instances are hard in 
CP and easy for the other domains and conversly:
� 2 examples: Sports scheduling (vs MIP) and Latin Square 

Completion (vs SAT)
� SAT is able to solve some very hard instances of Latin 

Square Completion but cannot solve empty Latin Square! 
Or Latin Square of Size 70

� Difficult to define an hard problem, because a 
problem is hard in respect to one technology



General considerations

� When solving a problem in CP:
� Potential performance gain:

� data structure optimization (code): x 10
� search strategies: x 1 000
� model : x 1 000 000

� Repartition of effort for ROCOCO
� data structure optimization (code): 75 %
� search strategies: 20 %
� model: 5 %



General considerations

� When solving a problem in CP:
� Potential performance gain:

� data structure optimization (code): x 10
� search strategies: x 1 000
� model : x 1 000 000

� Repartition of effort for ROCOCO
� data structure optimization (code): 75 %
� search strategies: 20 %
� model: 5 %

� Objective of CP Optimizer
� data structure optimization (code): 0 %
� search strategies: 10 %
� model: 90 %



Conclusion

� If P = NP then CP has great chance to disappear
� If P ≠ NP then whe can only shift the exponential
� Either we do theoretical research or we do applied 

research



Conclusion

� Theoretical research should be based on something 
scientifically strong and not be only an experimental 
research on random problems. 

� Doing something which has no real world application 
is not doing theoretical research. It is fortunately 
more complex than that

� Don’t do NAAR: Non Applicable Applied Research!
(C. Allegre from someone else)



Conclusion

� Applied research should be based on realistic 
problems. They can be small but they have to 
correspond either to a known issue or to a 
problem/subproblem. They also should not be 
solved by a simple and known CP model.

� Don’t forget that if we refuse applications then only 
the theoretical part remains!


