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Abstract. In this paper we present a new framework for over con-
strained problems. We suggest to define an over-constrained network as
a global constraint. We introduce two new lower bounds of the number
of violations, without making any assumption on the arity of constraints.

1 Introduction

Encoding real-world problems often leads to define over constrained networks,
which do not have any solution that satisfies all the constraints. In this situation
the goal is to find the best compromise. One of the most well-known theoretical
frameworks for over constrained problems is the Maximal Constraint Satisfaction
Problem (Max-CSP). In a Max-CSP, the goal is to minimize the number of
constraint violations. Best algorithms for solving Max-CSP [4, 5] are based on
computation of lower bounds of the number of violations. All these algorihms
are related to binary constraint networks. On the other hand, solving real-life
problems requires the use of non binary constraints [6].

In this paper we present a new framework for over constrained problems.
No hypothesis is made on the arity of constraints. We introduce two new lower
bounds of the number of violations. The first one is a generalization of the
previous studies for binary Max-CSP to the non binary case, through a variable-
based partitioning of the constraint set. The second one is an original lower
bound based on computation of disjoint conflict sets. Moreover, one advantage
of our framework is that filtering algorithms associated with constraints can be
used in a way similar to classical CSPs.

2 Background

A constraint network N is defined as a set of n variables X = {x1,...,z,}, a
set of domains D = {D(z1),...,D(x,)} where D(x;) is the finite set of possible
values for variable z;, and a set C of constraints between variables. A constraint



C on the ordered set of variables X (C) = (x;,,...,%;.) is a subset T(C) of the
Cartesian product D(z;,) X --- x D(z;, ) that specifies the allowed combinations
of values for the variables z;,,...,x; . An element of D(z;,) X --- X D(z;,) is
called a tuple on X (C). |X(C)| is the arity of C. A value a for a variable z is
often denoted by (z,a). A tuple 7 on X (C) is valid if V(x,a) € 7,a € D(x). C is
consistent iff there exists a tuple 7 of T'(C) which is valid. A value a € D(z) is
consistent with C iff x ¢ X (C) or there exists a valid tuple 7 of T'(C') in which
a is the value assigned to x.

Definition 1 Let z be a variable, a be a value of D(z), C be a set of constraints,
#inc((z,a),C) = |[{C € C s.t. (z,a) is not consistent with C'}|.

3 Satisfiability Sum Constraint

Let NV = (X,D,C) be a constraint network. We suggest to integrate C into a
single constraint, called the Satisfiability Sum Constraint (ssc):

Definition 2 Let C = {C;,i € {1,...,m}} be a set of constraints, and S[C] = {s;,: €
{1,...,m}} be a set of variables and unsat be a variable, such that a one-to-one
mapping is defined between C and S[C]. A Satisfiability Sum Constraint is the
constraint ssc(C, S[C], unsat) defined by:
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Notation 1 Given a ssc(C, S[C], unsat), a variable z, a value a € D(z) and K C C:
maxz(D(unsat)) is the highest value of “current” domain of unsat;

minUnsat(C, S[C]) is the minimum value of unsat consistent with ssc(C, S[C], unsat);
minUnsat((z,a),C, S[C]) is equal to minUnsat(C, S[C]) when z = a;

S[K] is the subset of S[C] equals to the projection of variables S[C] on ;

X(C) is the union of X(C;),C; €C.

The variables S[C] are used to express which constraints of C must be vio-
lated or satisfied: a null value assigned to s € S[C] expresses that its attached
constraint C is satisfied, whereas 1 expresses that C is violated!. The variable
unsat represents the objective, that is, the number of violations in C, equal to
the number of variables of S[C] whose value is 1.

Through this formulation, a solution of a Max-CSP is an assignment that
satisfies the ssc with the minimal possible value of unsat. A lower bound of
the objective of a Max-CSP corresponds to a necessary consistency condition
of the ssc. The different domain reduction algorithms established for Max-CSP
correspond to specific filtering algorithms associated with the ssc. This point of
view has some advantages in regards to the previous studies:

1. Any search algorithm can be used. Since we propose to define a constraint we

! The extension to valued CSPs [1] can easily be performed by defining larger domains
for variables in S[C].



can easily integrate our framework into existing solvers.

2. In all this paper, no hypothesis is made on the arity of constraints C.

3. When a value is assigned to s; € S[C], a filtering algorithm associated with
C; € C (resp. =C;) can be used in a way similar to classical CSPs.

4 Variable Based Lower Bound

The results presented in this section are a generalization to non binary con-
straints of previous works for Max-CSP [2, 7, 4].

4.1 Necessary Condition of Consistency

If minUnsat(C,S[C]) > maz(D(unsat)) then ssc(C, S[C],unsat) is not consis-
tent. Therefore, a lower bound of minUnsat(C, S[C]) provides a necessary con-
dition of consistency of a ssc. A possible way for computing it is to perform a
sum of independant lower bounds, one per variable:

Definition 3 Given a variable = a constraint set /C,
#inc(z, K) = minge p (o) (Finc((z, a), K)).

The sum of these minima with £ = C cannot lead to a lower bound of the
total number of violations, because some constraints can be taken into account
more than once. For instance, given a constraint C' and two variables z and y
involved in C, C' can be counted in #inc(z,C) and also in #inc(y, C). In this case,
the lower bound can be overestimated, and an inconsistency could be detected
while the ssc is consistent. Consequently, for each variable, an independent set
of constraints must be considered. In the binary case, the constraint graph? has
been used in order to guarantee this independence [4]. Each edge is oriented
and for each variable z only the constraints out-going x are taken into account.
This idea can be generalized to the non binary case, by associating with each
constraint one and only one variable involved in the constraint: the constraints
are partionned w.r.t the variables that are associated with.

Definition 4 Given a set of constraints C, a var-partition of C is a partition P(C) =
{P(z1),...P(z)} of C in | X (C)| sets such that VP(z;) € P(C) : VC € P(x;),z; € X(C).

Given a var partition P(C), the sum of all #inc(z;, P(x;)) is a lower bound of the
total number of violations, because all the sets belonging to P(C) are disjoint:

Definition 5 LB(P(C)) = Zz,—EX(C) #inc(z;, P(x;)), P(z;) € P(C)
Property 1 VP(C) a var-partition of C. LB(P(C)) < minUnsat(C, S[C])

Corollary 1 If LB(P(C)) > maxz(D(unsat)) then ssc(C,S[C], unsat) is not consis-
tent.

2 The vertex set of the constraint graph is the variable set and there is an edge between
two vertices when there is a constraint involving these two variables.



4.2 Filtering Algorithm
From definition of minUnsat((x,a),C, S[C]) we have the following theorem:

Theorem 1 Vz € X(C),Va € D(z): if minUnsat((z,a),C,S[C]) > maz(D(unsat))
then (z,a) is not consistent with ssc(C, S[C], unsat).

Therefore, any lower bound of minUnsat((x,a),C, S[C]) can be used in order to
check the consistency of (z,a). A first lower bound is #inc((z,a),C):

Property 2 #inc((z,a),C) < minUnsat((z,a),C, S[C])

This property leads to a first filtering algorithm. However, it can be improved by
including the lower bound of Property 1. We suggest to split C into two disjoint
sets P(z) and C — P(x), where P(z) is the subset of constraints associated with
x in a var-partition P(C) of C. Consider the following corollary of Theorem 1:

Corollary 2 Let P(C) be a var-partition of C, z a variable and a € D(z),
if minUnsat((z,a), P(x), S[P(z)])

+ minUnsat((z,a),C — P(z), S[C — P(z)]) > maz(D(unsat))

then (z,a) is not consistent with ssc(C, S[C], unsat).

Note that minUnsat(C — P(x), S[P(x)]) < minUnsat((x,a),C — P(z), S[P(z)]).
From this remark and Properties 1 and 2 we deduce the theorem:

Theorem 2 VP(C) a var-partition of C,Vz € X (C),Va € D(x), if #inc((z,a), P(z))+
LB(P(C — P(z))) > maz(D(unsat)) then a can be removed from its domain.

5 Constraint Based Lower Bound

An original lower bound of the number of violations in C, corresponding to a
lower bound of minUnsat(C, S[C]), can be obtained by successive computations
of disjoint conflict sets of C.

Definition 6 A conflict set is a subset K of C which satisfies: minUnsat(K, S[K]) > 0.

We know that a conflict set leads to at least one violation in C. Consequently, if
we are able to compute ¢ disjoint conflict sets in C then ¢ is a lower bound of
minUnsat(C, S[C]). They must be disjoint to guarantee that all violations taken
into account are independent. For each C; € C such that D(s;) = 1, the set {C;}
is a conflict set. Moreover, constraints C; of C with D(s;) = 0 are not interesting
in the determination of conflict sets. Hence we will focus on the set of constraints
C; of C with D(s;) = {0, 1}, denoted by C-.

Consider any ordering < on C». De Siqueira N. and Puget have shown that
a conflict set of C7 can be simply computed by temporarily setting the variables
of S[C7] to 0 w.r.t. < until a failure occurs. When a variable of S[C-] attached
to C' € Co is set to 0 then values from domains of variables X (C) that are not
consistent with C' are removed. When a failure occurs, then all the constraints C'



for which s has been set to 0 form a conflict set. Given a set of constraints @), we
call coMPUTECONFLICTSET(Q) the function which implements this algorithm.

A set of disjoint conflict sets can be easily computed by calling function
cOMPUTECONFLICTSET(Q) with @ = C7 and by iteratively calling it with @ +
@ — K each time a conflict set X is found. The algorithm stops when @ is empty
or when no conflict set is detected in (). The lower bound depends on the number
of conflict sets, and, since they are disjoint, on the size of the conflicts sets.

Definition 7 Let Q be a set of constraint. A minimal conflict set w.r.t. COMPUTE-
CONFLICTSET is a subset K of @ such that VC € K, coMPUTECONFLICTSET(K — {C})
detects no conflict set.

De Siqueira N. and Puget have suggested a simple algorithm for finding mini-
mal conflict set from a conflict set IC [3]. This algorithm calls at most |K] times
the cOMPUTECONFLICTSET function. COMPUTEMINIMALCONFLICTSET(K) de-
notes the function that returns a minimal conflict set of K. We can now propose
an original algorithm for computing a lower bound LB of minUnsat(C, S[C]):

Step 1: Let LB « |{C; € C s.t. s; = 1}| and Q + C;
Step 2: K <~ coMPUTECONFLICTSET(Q);

if K =0 then return LB else Kpin < COMPUTEMINIMALCONFLICTSET (K);
Step 3: LB < LB + 1; Q + Q — Kmin; goto Step 2.

Corollary 3 If LB > max(D(unsat)) then ssc(C, S[C], unsat) is not consistent.

6 Conclusion

This paper presents a new framework for over constrained problems, which can
be directly integrated into existing solvers. New lower bounds of number of
violations are introduced without making any assumption on the constraints.
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